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Atualmente, dois assuntos relacionados a veículos têm sido amplamente discuti-
dos: o uso de biocombustíveis e a poluição do ar. No contexto específico de veículos
com motores a diesel, a demanda por biodiesel vem aumentando, trazendo diversos
benefícios ambientais. No entanto, apesar de o biodiesel causar menos poluição do ar
do que o diesel tradicional, ele ainda polui o ar de uma maneira que não é aceita pelas
leis atuais. Para lidar com esse problema, é utilizado um dispositivo chamado Diesel
Particulate Filter, ou apenas DPF. Neste trabalho, tem-se como objetivo descrever
o escoamento multifásico, composto por ar e partículas geradas pela combustão do
biodiesel, dentro desse dispositivo. Assim, é apresentada uma metodologia capaz
de simular numericamente esse tipo de escoamento. Essa metodologia utiliza uma
abordagem Euleriana-Lagrangiana para descrever o escoamento multifásico e tam-
bém utiliza a equação de Forchheimer para modelar o escoamento dentro de uma
região porosa existente no interior do DPF. As equações que descrevem o escoamento
de ar são resolvidas numericamente utilizando o Método dos Elementos Finitos, en-
quanto as equações de movimento das partículas são resolvidas pelo método Runge-
Kutta de 4a ordem. Um código computacional baseado nessa metodologia foi desen-
volvido e passou por um processo de verificação antes de ser usado para simular esse
problema. Em seguida, o código foi utilizado para simular o escoamento no DPF, e os
resultados foram comparados com aqueles encontrados na literatura, possibilitando
verificar que a metodologia apresentada é realmente capaz de simular corretamente
o escoamento de ar com partículas de biodiesel dentro de um DPF.
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Nowadays, two topics about vehicles that have been discussed a lot are the use
of biofuels and the air pollution. In the specific context of vehicles with diesel en-
gines, the biodiesel demand has been increasing, which brings a lot of environmental
benefits. However, even though biodiesel causes less air pollution than traditional
diesel, it still pollutes the air in a way that is not accepted by the current laws.
Then, a device called Diesel Particulate Filter, or just DPF, is used to mitigate
this problem. In this work, it is aimed to describe the multiphase flow, constituted
by air and particles generated by biodiesel combustion, inside this device. Then,
it is presented a methodology able to numerically simulate this type of flow. This
methodology has used an Eulerian-Lagrangian approach to describe the multiphase
flow and it also has used the Forchheimer equation to model the flow inside a porous
region that exists inside the DPF. The equations that describe the air flow are nu-
merically solved by using the Finite Element Method while the particulates’ motion
equations are solved by the 4th order Runge-Kutta method. A computational code
based on this methodology was developed and a verification process was made on
it before it was used to simulate this problem. After that, the code was used to
simulate the flow in the DPF and the results were compared with the ones found in
the literature, making it possible to verify that the presented methodology is really
capable to simulate correctly the airflow with biodiesel particulates inside a DPF.
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Chapter 1

Introduction

The transportation sector has been a very important area for humanity for some
time now. In this scenario, internal combustion engines play a major role, as they
are currently the main source of energy used in it. Then, it is possible to highlight
the diesel engine, a combustion engine that is widely used by vehicles nowadays
due to its advantages like efficiency and power output. However, one of its main
problems is its air pollution emissions. This problem can be mitigated by the use of
a device named Diesel Particulate Filter, or just DPF.

Moreover, another great problem related to the diesel engine is the high
petroleum consumption problem, which has led to an increase in the demand for
biofuels. In this specific diesel engine case, some efforts have been made for the
partial or total replacement of traditional diesel by biodiesel. Therefore, since the
DPF usually has been used along with diesel fueled engines, it is also important to
study how it works with biodiesel.

Nowadays, since the computational capacity available has increased considerably
in recent years, a very important tool for engineers is numerical simulation. These
simulations have made it possible to solve complex cases that have no analytical
solutions in an efficient way. There is an important branch of fluid mechanics that
uses numerical simulations to solve fluid flows. This area is named Computational
Fluid Dynamics, or just CFD.

Then, this work aims at developing a methodology to simulate numerically the
multiphase flow inside the DPF, including the filter which is made of a porous
material, and to use this methodology to develop a computational code to run some
DPF cases. The DPF’s flow simulation will make it possible to study it in more
detail.

The structure of this thesis is organized as follows. After a brief introduction
presented in this chapter, it is presented a literature review about biodiesel, DPF,
numerical methods, and the physics present in this case. After that, it is shown
the governing equations of this problem. Then, the numerical methods used in this
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work are presented and applied to the governing equations.
After applying the numerical methods, the in-house developed code is used to

run cases that are well established in the literature in order to ensure that this code
is reliable. Therefore, it is used to simulate DPF flows cases. The results that were
obtained for DPF cases are compared with those found in the literature to confirm
the presented methodology’s validity. Finally, some conclusions can be drawn and
suggestions for future work can be made.

This research aims at presenting a valid methodology that can be used to study
the flow inside a DPF used in vehicles that use biodiesel, making it possible to study
in detail this flow and, then, make some further improvements to it. Moreover, it is
expected that this methodology can be further used in different scenarios.
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Chapter 2

Literature Review

2.1 Biodiesel

Biodiesel is a renewable fuel that is produced from vegetable oils, animal fats,
or other materials consisting mainly of triacylglycerols. Chemically, biodiesel is a
mono-alkyl ester, most commonly a methyl ester, and it is an alternative fuel that
is used in compression-ignition engines [1].

Biodiesel was first used in 1893 when Rudolf Diesel, the compression-ignition
engine’s inventor, used peanut oil to fuel his engine. After that, vegetable oils were
used as fuels until the 1920s when fossil-based diesel became more popular offering
cheaper prices and higher availability [2].

So, the first feedstocks were vegetable oils. However, even though they still are
the main feedstocks, nowadays many other materials are used to produce this fuel,
like used cooking oils, grease, and animal fats [1].

This biofuel has properties similar to regular diesel which is made of petroleum.
This fact makes it possible to use it with little or no engine modification. In addition,
the biodiesel can be used in its pure form or blended in any proportion with regular
diesel [3].

In order to increase its usage, many countries have made mandatory the use of
biodiesel in commercial diesel [4]. In Brazil, for example, there is a law about that
since 2008, when it was established that it should have 2% of biodiesel in the fuel.
Since then, this percentage has increased [5].

There are some important disadvantages in its use that have been affecting its
popularity. One of them is the high prices of the feedstock. Feedstock acquisition
accounts for over 80% of the production cost, which makes it difficult to make it
economically viable. A possible solution for that is the use of alternative feedstocks
[6].

Another important problem of biodiesel is the higher NOX exhaust emission that
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occurs in some cases [6]. The NOX emission is a big problem since it causes direct
and indirect impacts on people’s health [7]. This problem can be mitigated by an
engine and/or fuel modifications [8].

There are also other disadvantages of biodiesel like inferior storage, inferior ox-
idative stability, inferior low-temperature operability, and lower volumetric energy
content. These can be mitigated through cold flow improver, antioxidant additives,
blending biodiesel with petrodiesel, and/or reducing storage time [6].

On the other hand, there are a lot of advantages to the use of this biofuel. The
main advantages are environmental impact reduction since it derives from renewable
and domestic feedstock, it is biodegradable and, despite the higher emission of NOX ,
it has a lower overall exhaust emission. There are also advantages not related to
environmental impact reduction like its inherent lubricity, low toxicity, and superior
flash point [6].

2.2 Diesel Particulate Filter

Nowadays, because of the increasing pollution concerns, there are stringent emis-
sion regulations for diesel engine’s vehicles. So, these emission regulations are mak-
ing the use of Diesel Particulate Filters mandatory, since it is proven that until now
this device is the only one able to control the particulate emissions in an effective
way [9].

The Diesel Particulate Filter, also known as DPF, is a device used to mitigate the
emissions of a diesel engine it has two functions: to trap and retain the particulate
matter and to get safely rid of this particulate matter, avoiding problems in the
engine operation [10].

There are different configurations for DPF available, but the most widely used
configuration is the wall-flow type. This type of construction has a honeycomb shape
with parallel channels which are plugged alternately at each end. Besides that, the
walls are made of a porous filter where the particulates are retained [11].

Figure 2.1 presents a schematic figure of the structure of the channels inside the
DPF. In this figure, it had been only shown a sample of nine channels for simplicity
reasons. On the left, it is shown a front view of the device’s channels while it is
shown an inside view from them on the right.

In the wall-flow DPF, the exhausted air enters in the channel and, since this
channel is closed by a plugged end, the air is forced to go through the porous walls,
moving to another channel where the inlet is closed and the outlet is open, making
it possible for the filtered air to escape to the atmosphere. This situation is also
represented in the Figure 2.1.

As mentioned before, apart from the filtration function of this device, it has also
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Figure 2.1: Schematic representation of DPF’s channels.

the function of eliminating the particulates that have been trapped. So, to achieve
this goal, a regeneration process is usually carried out.

Regeneration is performed by burning the particulates that are trapped in the
filter. To burn them, it is necessary sufficient oxygen and a minimum heat quantity.
The oxygen is not a problem because there is plenty of them in the exhausted air.
However, the heat quantity can be a problem, being necessary to ensure that the
device’s temperature is at least a minimum value that makes possible to incinerate
the particulates [10].

There are two ways to achieve regeneration: passive and active. Passive regen-
eration means that the burning process is achieved without any auxiliary system.
On the other hand, active regeneration occurs when auxiliary means are needed to
reach the minimum heat required for the process. A combination of these two types
of regeneration is also used in many applications [10].

2.3 Porous Medium

The study of the flow behavior through a porous medium is an important field
of fluids mechanics since there are many industrial processes related to that, like
filtration and oil extraction through porous rock. To describe this flow, the usual
Navier-Stokes equations can be used. However, to do that it would be necessary to
describe correctly the geometry of the porous walls which are bounding the flow,
but this description probably would be very difficult to do since these geometries
usually are very complex [12].

Then, since it usually is very difficult to calculate directly the flow in the porous
medium, it was necessary to model this region. The model with the simplest relation
between velocity and pressure is the model known as Darcy Law. The Darcy Law
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is summarized by the following Eq. 2.1 [13].

us = −K

µ
∇P (2.1)

where up is the superficial velocity vector, K is the permeability coefficient of the
porous medium, µ is the dynamic viscosity and P is the pressure.

The Darcy Law provides good results for flows where the inertial effects are
negligible. A way to evaluate the importance of the inertial effects in the flow is by
the Reynolds number associated with the pores, which is defined by Eq. 2.2 [13].

Rep =
ρUcδ

µ
(2.2)

where Rep refers to the Reynolds number associated with the pores, ρ to density,
Uc to the characteristic velocity, δ to the characteristic porous size, and µ to the
dynamic viscosity.

So, Darcy Law works well for Rep lesser than 1. However, for other cases where
the inertial effects are important, a new term is included to describe it. This new
equation is called the Forchheimer equation and is presented by Eq. 2.3, where CF

refers to the inertial resistance coefficient [13].

∇P = − µ

K
us −

ρCF√
K

|us|us (2.3)

Even though Darcy’s Law can model correctly the porous medium effects for low
Rep and the Forchheimer equation can be used accurately for high Rep, still exist a
transition regime between them. This regime occurs in the range of 1 < Rep < 10

and to describe it usually it is added an extra term to Eq. 2.1 which has a form of
|u|αu, where 1 ≤ α ≤ 2 [13].

2.4 Particle-Laden Flows

Particle-Laden flows are a subclass of multiphase flows which consist in a two-
phase fluid flow constituted by a continuous phase and a dispersed phase. The
dispersed phase is a number of immiscible particles that are being carried by the
continuous phase, which is a liquid or a gas and can also be referred to as the carrier
phase.

Particle-Laden flows play a very important role since they are present in many
different ways in people’s daily lives. Some examples are the pollution particles in
the air, the sand grains carried by the wind, and respiratory droplets released from
a person containing COVID’s virus.

Unlike the single-phase flows that have governing equations already well es-
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tablished in the literature, the multiphase flows still have their correct governing
equations discussed. Because of that, the study of multiphase flows, including the
particle-laden flows, still is a challenging area [14].

Computational methods using Eulerian-Eulerian and Lagrangian-Eulerian ap-
proaches have been proving to be very useful to study this type of flow [15]. The most
used ones are the equilibrium Eulerian approach, Eulerian approach, Lagrangian
point particle approach, and the fully resolved approach [16]. A brief description of
these methods is presented below, the description of the first two methods is based
on BALACHANDAR AND EATON [15] while the description of the other two is
based on TABAEIKAZEROONI [16].

An equilibrium Eulerian approach is an Eulerian-Eulerian approach that assumes
that the particles are so small that their motion is only influenced by the surrounding
fluid. Then, only the momentum and energy equations of the carrier phase must be
solved, along with the particle concentration equation. The particle’s velocity can
be expressed as a function of the fluid velocity and the particle Stokes number.

The Eulerian approach is another method that uses the Eulerian-Eulerian ap-
proach. This method model the continuous and the dispersed phases as two inter-
penetrating fluid mediums. Then, unlike the previous approach, this one needs to
solve the momentum and energy equations for both phases, taking into account in
these equations the momentum and energy exchange between phases.

The advantage of this approach over the equilibrium Eulerian approach is that
this one applies to larger particles. On the other hand, the disadvantage is that, since
it is necessary to solve more equations, this one is more computationally expensive.

The Lagrangian point particle approach is a method that uses a Eulerian-
Lagrangian approach and it is probably the most used method since it has a low
computational cost. In this method, the carrier phase is represented in a fixed Eule-
rian frame while the dispersed phase is treated in a Lagrangian way. Moreover, the
interaction between them and the surrounding fluid is modeled.

The fully resolved approach is another method based on the Eulerian-Lagrangian
approach which solves the Navier-Stokes equations for all flow scales. To do that,
the particle’s geometry is represented in the physical domain with no-slip and no-
penetration conditions being imposed on their surfaces to represent correctly the
interaction between the particles and the fluid, not using any model.

2.5 Numerical Methods

Nowadays, computers have an important role in the science field, being necessary
for solving a lot of problems. Thus, there is an engineering field that uses compu-
tational effort to apply numerical methods to solve fluid mechanics problems. This
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field is known as CFD, which is short for Computational Fluid Dynamics. In this
field, many numerical methods are used, but the most important ones are: Finite
Difference, Finite Volume, and Finite Element [17].

The Finite Difference Method is the oldest and also the easiest method to use
in simple geometry cases. This method consists of the discretization of the physical
domain in a grid and the approximation of the equation derivative terms by Taylor
series expansion or polynomial fitting at each grid node. After that, a linear system
is obtained, which must be solved.

The main advantages of the Finite Difference Method are its simplicity and ef-
fectiveness for simple geometries. However, it is very difficult to use this method on
more complex geometries, making it not useful for many problems. Another impor-
tant disadvantage is that this method does not enforce the conservation principle
[17].

In the Finite Volume Method, the physical domain is subdivided into a finite
number of control volumes. Then, using an integral form of the conservation equa-
tions, these equations are applied to each control volume aiming to calculate the
variable values for its centroid. Finally, an algebraic equation is obtained for each
control volume centroid making a linear system that must be solved.

Unlike the Finite Difference Method, the Finite Volume Method is suitable for
complex geometries and enforces fluid mechanics conservation principles. Another
important advantage of this method is that it is simple to understand since all terms
that need to be approximated have physical meaning [17].

In the Finite Element Method, the physical domain is also subdivided into a
finite number of sub-regions which are usually called elements. Then, the governing
equations are multiplied by a weight function and integrated over the entire do-
main. So, to discretize the equations for each computational node, the integral is
approximated by shape functions [17].

According to LEWIS AND NITHIARASU AND SEETHARAMU [18], the solu-
tion process using the Finite Element Method can be summarized by the following
steps:

1. Discretize the domain: The physical domain must be subdivided into elements,
creating a computational mesh. In this method, it is possible to use a variety of
element shapes, making the method applicable to complex geometries, which
is one of its advantages.

2. Select shape functions: the shape function is responsible for representing the
variation of the variables over an element. An element is constituted by nodes
which at each one is stored the variable value and the shape function is re-
sponsible to set the relation between these values.
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3. Form element equations: Using the shape functions, the governing equations
can be approximated to a linear system for each element. So, a matrix and a
vector load are obtained to represent this equation for each element

4. Assemble the element equations to obtain a global linear system: Since it was
already obtained a linear system for each element, it is necessary to assemble
this linear system, forming a global one. To do that, the element matrix and
element vector load are used to form a global matrix and a global vector load.

5. Solve the linear system: After the assemblage step, it is necessary to solve the
linear system. So, since there are a matrix and a load vector, it is possible to
calculate the variable vector using one of the many solving methods that are
available.

6. Calculate the secondary quantities: This last step is not always needed, just
for some cases. The calculation of secondary quantities is necessary when
there are more quantities of interest, despite the variables calculated. These
quantities can be calculated through the values of the variables that were
already obtained.

One of the main advantages of this method is the already mentioned ability
to deal with complex geometries, which are the ones usually found in practical
problems. Another important advantage is that this method is relatively easy to
analyze in a mathematical way.

In general, the Finite Volume Method and the Finite Elements Method are both
suitable methods for CFD simulations and none of them has a big advantage over
the other. Then, it was adopted the Finite Element Method in this work due to the
expertise that our research group has with this method.

2.6 CFD applied to DPF

Since CFD is an important methodology used to solve problems of fluid flow, it
has been used to study the flow inside DPF. This usage is very important to ensure
the high efficiency of the device and to improve it.

SAMEI [19] has made a 3D model of a specific DPF type and simulated the
flow inside it. In order to simulate the flow, it was used the mass, momentum, and
energy conservation equations along with the turbulence model κ−ϵ to calculate the
turbulence effects and the Forchheimer equation to predict the flow in the porous
medium. The particle behavior wasn’t simulated in this work.

Moreover, the permeability was adjusted in order to represent the pressure drop
on the filter in different situations, like clean and dirty filter situations. It also
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carried out experiments with the modeled DPF, making it possible to compare the
results between experimental and computational results, achieving a good agreement
between them.

PISCAGLIA et al [20] developed a code that solves the conservation equations
with the Darcy and Forchheimer terms included for the porous region and also is
configured to track Lagrangian particles which represent the soot particles. The
code is also capable to predict the sticking of these particles on the porous surface
and to evaluate the increasing resistance on the device due to their accumulation.

JANISZEWSKI AND TEODORCZYK [21] used the commercial software FLU-
ENT to simulate the regeneration process in a DPF. The DPF was modeled as 2D,
consisting of a half inlet channel, a half outlet channel, a porous wall, and a soot
layer deposited on the porous wall. Besides that, the porous wall and the soot layer
were modeled as a porous medium.

It was used in the inlet and outlet channels conservation equations to calculate
the flow behavior whereas the porous wall and soot layer used similar equations
but took into account the porosity and added the Darcy term. It was used these
equations to calculate the temperature, velocity, pressure fields, and mass fraction.
After that, the soot mass depletion was calculated by an outsourcing procedure and
then the energy equation was solved. Finally, the temperature, velocity, pressure,
and mass fraction can be calculated and this process is done again until it reaches
the stop time.

DEUSCHLE et al [22] also used the commercial software FLUENT to predict
the filtration, regeneration, and deposit rearrangement processes in the Diesel Par-
ticulate Filter. They used as computational domain a 2D model consisting of half
of an inlet channel and half of an outlet channel.

The commercial code uses the continuity and Navier-Stokes equations to calcu-
late the fluid flow while the particle tracks of the solid phase were determined using
an Euler-Lagrange method. To compute the particle’s trajectory it is made integra-
tion of the forces acting in each particle. After all these calculations, user-defined
subroutines are used to predict the mass deposition, regeneration, and rearrange-
ment processes in the filter. Finally, all these calculations are done iteratively, until
it reaches a predefined final time.

PISCAGLIA et al [23] have developed at OpenFOAM, an open source software,
a new solver for reacting and compressible flow through a porous medium and used it
to study the flow inside DPF. This solver uses the usual conservation equations with
the addition of the Darcy and Forchheimer terms in the momentum conservation
equation.

In their work, they have used this new solver to predict the hydrodynamic char-
acteristics of a 3D multi-channel DPF model. So, they could make a comparison
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between simulation and experimental results, reaching a good agreement between
them and concluding that the code was reliable.

PISCAGLIA et al [24] used an open-source code to simulate a three-dimensional
flow containing solid particles inside a DPF. To simulate the gas phase, it was used
conservation equations with spray source terms included to represent the solid-gas
interaction and Darcy and Forchheimer terms included in the momentum equation
to represent the porous media effects.

In their work, it was also calculated the solid particles’ behavior through a La-
grangian approach. To simulate this behavior was used a technique to model sprays,
which consist of representing a certain number of droplets that have an equal loca-
tion, size, temperature, and velocity as a particle. So, the droplets have the same
trajectory as their respective particle and the particles exchanges mass, momen-
tum, and energy with the gas phase. This exchange between particles and gas is
mathematically represented in the equations by the spray source terms.

The particle motion was calculated as a function of the relative velocity between
the particle and the gas, and of the drag. Finally, it is possible to estimate the
solid mass that is retained in the filter by tracking the particles. To do that, it is
evaluated the particles that are in the filter region and an estimation is made about
the percentage of the particle mass that will be retained. This estimation is made
using the device filtration efficiency.

KONSTANDOPOULOS et al [25] used a 1D analytical model and 3D CFD
simulations to study the behavior of the flow inside a DPF with a continuously
regenerating trap. The 3D CFD simulations were carried out using the commer-
cial software FLUENT, which uses the Navier-Stokes equations with the addition
of the Darcy and Forchheimer terms in the porous medium. Moreover, they also
obtained experimental results and made a comparison between their results with
the analytical and CFD results. It was noted a good agreement between them.

Since the DPF which was studied in their work had a continuous regeneration
process going on, the device was modeled as if its filter was clean or lightly loaded.
Finally, the 1D model was used to obtain a DPF design that would result in the
least pressure drop inside the device.

SOUZA [26] and SOUZA AND ANJOS [27] developed a computational code
in Python using an Euler-Lagrange approach to study DPF flow. The continuous
phase was simulated using the conservation equations for incompressible fluids while
the solid particles were simulated by applying Newton’s second law and taking into
account that the forces applied to the particles were gravity, buoyancy, and drag
forces. Besides that, it was also added the Darcy and Forchheimer terms in the
momentum equations to model the porous medium effects. Finally, it was used the
Finite Element Method (FEM) to solve the differential equations.
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SBRIZZAI et al [28] used a three-dimensional approach to simulate the diesel
soot particles inside a DPF. To calculate the continuous phase, it was used the
Navier-Stokes equations with the Darcy equation being used along with them in the
porous domain. Moreover, the commercial software Star-CD was used to solve these
equations through the finite volume method.

After that, it was also simulated the solid phase, which was constituted by the
particulate matter. In this work, it was taken into account that the particles were
in the PM2.5 range, which means that the particles have diameters smaller than 2.5
µm. At this size range, there are particles having dimensions smaller than the mean
free path of the molecules of the gas which constitutes the continuous phase. So, it
was necessary to include rarefied gas hypotheses to study their behavior.

The particle’s trajectory was calculated using a Lagrangian approach by inte-
grating over time the motion equation. They were modeled as non-interacting and
non-deformable solid spheres and the interaction between them and the continuous
phase was modeled by a one-way coupling momentum transfer between them.

Finally, it was also modeled the interaction between particles and the porous
wall. The model used was based on impact kinetic energy loss, relating the velocities
before and after the interaction through a coefficient of restitution which was also
modeled. This coefficient of restitution model is such that for particles with a
velocity lower than 2 m/s, it has a value near zero, making it possible to assume
that these particles were captured by the porous wall.

BENSAID et al [29] studied the multi-phase flow inside DPF using an Eulerian-
Eulerian approach. The continuous phase was calculated using continuity and mo-
mentum balance equations. In these equations, it was taken into account the volume
fraction of the gas and the inter-phase interaction due to drag.

The deposition rate of soot into the filter was calculated by a transport equation
that takes into account the local particle velocity, the volume fraction of the particles,
the particle density, and the filter properties. Moreover, the accumulation of soot
in the filter changes the filter characteristics, making it to be an iterative process.

After seeing all these works that simulated the flow inside a DPF, it is possible
to see that there are many different approaches being used for similar cases with
no approach being considered the most suitable. Then, this work aims to study
and develop an approach suitable for the specific case of flow inside the DPF with
biodiesel particles.
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Chapter 3

Mathematical Model

3.1 Continuous Phase

The continuous phase behavior can be modeled by the conservation equations
of mass, momentum, and energy. Accordingly to BATCHELOR [30], the mass
conservation equation for an incompressible case is presented by Eq. 3.1, where u

represents the velocity vector.

∇ · u = 0 (3.1)

The momentum equation conservation for a case where, in addition to the in-
compressible flow hypotheses, it is also possible to consider that the fluid density
and viscosity are constant, is given by Eq. 3.2 [30].

ρ
Du

Dt
= −∇P + µ∇2u+ ρg (3.2)

where ρ is the fluid density, u is the velocity vector, P is the pressure, µ is the
dynamic viscosity and g is the gravity vector. Then, adopting the already mentioned
hypothesis of incompressible flow, density, and viscosity constants, Eq. 3.1 and Eq.
3.2 are used to model the hydrodynamic characteristics of the flow, i. e., they are
used to calculate the velocity and pressure fields. It is also possible to calculate the
temperature field through the energy conservation equation.

However, only these equations are not enough to solve the velocity and pressure
of the flow, it is also necessary to apply boundary conditions in the problem. In
this work, it was used the boundary conditions of the inlet with constant velocity,
the outlet with null pressure, the wall condition, and the symmetry condition which
will be later explained in detail.

An important way to represent the governing equations of a problem is by using
the dimensionless form of the equations. This form has important advantages, since
it is very revealing, making it possible to obtain results that will be the same for
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different cases if they are dynamically similar. The principle of dynamical similar-
ity is very important and used widely in experiments since it makes it possible to
estimate the real conditions by experimenting with different parameters which are
easier to reproduce in a laboratory [30].

Then, introducing Lc as a characteristic length and Uc as a characteristic velocity,
it is possible to express the variables in a dimensionless form:

x′ =
x

Lc

, u′ =
u

Uc

, t′ = t
Uc

Lc

, P ′ =
P

ρU2
c

, g′ =
g

|g|
(3.3)

where x refers to the position vector, u to the velocity vector, t to time, P to
pressure, ρ to density, g to gravity vector and the ′ symbol is used to refer to the
dimensionless form.

So, rearranging the conservation of mass and momentum equations (Eq. 3.1
and Eq. 3.2) to their dimensionless form, the following equations are obtained,
respectively:

∇ · u′ = 0 (3.4)

Du′

Dt
= −∇P ′ +

1

Re
∇2u′ +

1

Fr2
g′ (3.5)

where Re is the Reynolds number and Fr is the Froude number. Both numbers are
presented by the following equations, respectively:

Re =
ρUcLc

µ
(3.6)

Fr =
Uc√
|g|Lc

(3.7)

3.2 Porous Region

Since a direct simulation of the flow inside the porous would be a very complex
problem to solve, the porous region will be modeled in this work. Then, an approach
based on the Forchheimer equation, presented by Eq. 2.3, will be used.

An approach that could be used to solve this problem is the use of Forchheimer
equation (Eq. 2.3) along with the continuity equation (Eq. 3.1) to describe the flow
behavior. Then, it would need to be set coupling conditions between the porous
region and the other regions across their interfaces. However, this approach can be
complex to use because of the difference in the nature between the equations used
in the different regions [13].
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So, what can be done to mitigate the problem of the last approach is to use an-
other one called the penalization approach. It consists of modifying the momentum
conservation equation (Eq. 3.2) by adding two penalization terms related to the
Forchheimer equation (Eq. 2.3) to represent the porous medium effects on the flow
with the superficial velocity being approximated as the velocity of the flow in this
region. The modified momentum conservation equation is presented by Eq. 3.8 [13].

ρ
Du

Dt
= −∇P + µ∇2u+ ρg −

(
µ

K
u+

ρCF√
K

|u|u
)
ε (3.8)

where ρ is the fluid density, u is the velocity vector, P is the pressure, µ is the
dynamic viscosity, g is the gravity vector, K is the permeability coefficient, CF is
the inertial resistance coefficient and ε is the penalty coefficient which values are
ε = 0 for the fluid region and ε = 1 for the porous region.

As mentioned before, the dimensionless form of equations is an important rep-
resentation form. So, using again the dimensionless variables, presented by Eq. 3.3,
it can be obtained the dimensionless form of the modified momentum conservation
equation (Eq. 3.8) presented by Eq. 3.9.

Du′

Dt
= −∇P ′ +

1

Re
∇2u′ +

1

Fr2
g′ − (Di1u

′ +Di2|u′|u′)ε (3.9)

where u′ is the dimensionless velocity vector, P ′ is the dimensionless pressure, g′ is
the dimensionless gravity vector, Re is the Reynolds number (Eq. 3.6), Fr is the
Froude number (Eq. 3.7). Di1 and Di2 are dimensionless groups defined according
to Eq. 3.10 and Eq. 3.11.

Di1 =
µLc

ρKUc

(3.10)

Di2 =
LcCF√

K
(3.11)

3.3 Dispersed Phase

In this work, it is going to be used the point particle approach to model the
behavior of the dispersed phase. This model was adopted due to its low compu-
tational effort, simplicity, and ability to handle well cases with a great number of
particles. The method consists of modeling each particle as a point source of mass,
momentum, and energy. Then, in this case, where it is possible to assume that there
is no mass or energy exchange, the particle motion equation can be obtained in a
Lagrangian view using Newton’s second law [31].

The dispersed phase is constituted by the particulate matter exhausted by the
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engine due to biodiesel combustion and it is going to be modeled as non-deformable
spherical particles. The diameter of these particles is about 100 ηm accordingly to
SOUZA [26].

In order to model the particles’ behavior, it is necessary to understand their
interactions with the surroundings. According to ELGHOBASHI [32], for turbulent
particle-laden flows with very small values of volume fraction particles, values less
than 10-6, the collision between particles and the effect of the particles on the flow
can be neglected, only taking into account the influence of the fluid on the particles.
This coupling between the particles and their surrounding is called one-way coupling.
In this work, the particle volume fraction is going to be also very small and, because
of that, the one-way coupling is going to be adopted here.

The particle motion in a one-way coupling condition is governed by the forces
exerted by the carrier phase. For a particle immersed in a fluid, the main forces
acting on it are drag, lift, buoyancy, added mass, and history forces. However,
usually, in gas-solid particle-laden flows the lift, buoyancy, added mass, and history
forces can be neglected due to the great particle density value in comparison with
the gas density value [31].

Moreover, for particles in the submicrometer range, the Brownian diffusion effects
become important and must be also taken into account to compute their behavior
[33]. Then, in this work, we consider that the forces acting on the particles are
gravity, drag, and Brownian forces. Therefore, Eq. 3.12 presents the particle motion
equation.

mp
dv

dt
= mpg + FD + FB (3.12)

where mp is the particle mass, v is the particle velocity, t is the time, g is the gravity
vector, FD is the drag force and FB is the Brownian force.

The drag force for spherical particles in the submicrometer range can be ex-
pressed by Stokes’ law corrected by a correction factor [33]. Then, the drag force
for this work’s case is presented by Eq. 3.13

FD =
3πµd

Cc

(u− v) (3.13)

where FD is the drag force, µ is the dynamic viscosity, d is the particle diameter, Cc

is the Cunningham factor, u is the fluid velocity vector and v is the particle velocity
vector.

The Cunningham factor is presented by Eq. 3.14, where λ is the molecular mean
free path of the gas.

Cc = 1 +
2λ

d

[
1.257 + 0.4e−1.1( d

2λ)
]

(3.14)
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The Brownian motion is a random motion caused by the collisions of molecules
with particles [14]. Then, the Brownian force is the force exerted on the particles
due to Brownian motion. Moreover, the Brownian force can be modeled as a white
noise Gaussian random process, and, for this case, the Brownian force is going to
be modeled as presented by Eq. 3.15 [33].

FB = mpG

√
πS0

∆t
(3.15)

where FB is the Brownian force, mp is the particle mass, G is a vector containing
a zero-mean independent Gaussian random number of unit variance for each flow
direction, S0 is the spectral intensity of the noise and ∆t is the time difference
between time steps.

The spectral intensity of the noise is given by Eq. 3.16, where ν is the kinematic
viscosity, k is the Boltzmann constant, T is the absolute temperature of the fluid,
ρ is the fluid density, d is the particle diameter, ρp is the particle density and Cc is
the Cunningham factor.

S0 =
216νkTρ

πd5ρ2pCc

(3.16)

Then, substituting Eq. 3.13 and Eq. 3.15 into Eq. 3.12 and simplifying the
equation, knowing that the particle mass mp is equal to the product of the particle
density and its volume, it is possible to get the equation that represents the particle
motion in this work’s cases, presented by Eq. 3.17.

dv

dt
= g +

18µ

d2Ccρp
(u− v) +G

√
πS0

∆t
(3.17)

Where v is the particle velocity vector, g is the gravity vector, µ is the dynamic
viscosity, d is the particle diameter, Cc is the Cunningham factor, u is the fluid
velocity, G is a vector containing a zero-mean independent Gaussian random number
of unit variance for each flow direction, S0 is the spectral intensity of the noise and
∆t is the time difference between time steps.

It was used for the dispersed phase the initial condition of particulates randomly
displaced along the domain’s inlet, far before they have reached the DPF. Besides
that, it was used the boundary conditions of totally elastic collision when the parti-
cles reach the plug. Lastly, it was considered that if one particle leaves the compu-
tational domain through the symmetry boundary, another similar particle is going
to enter the domain symmetrically to the first one due to the problem’s symmetry.
This last condition is mathematically equal to the totally elastic condition.

Finally, it is necessary to get the dimensionless form of Eq. 3.17 in the same way
that was done to get Eq. 3.4, Eq. 3.5 and 3.9. So, the dimensionless form of the
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particle motion equation is presented by Eq. 3.18.

dv′

dt′
=

1

Fr2
g′ +

18µLc

d2CcρpUc

(u′ − v′) +
G

Uc

√
LcπS0

Uc∆t′
(3.18)

Where t′, g′, u′ are dimensionless variables presented by Eq. 3.3, v′ is the
dimensionless form of the particle velocity, Fr is the Froude number presented by Eq.
3.7, µ is the dynamic viscosity, Lc is the characteristic length, Uc is the characteristic
velocity, d is the particle diameter, Cc is the Cunningham factor, ρp is the particle
density, G is a vector containing a zero-mean independent Gaussian random number
of unit variance for each flow direction, S0 is the spectral intensity of the noise and
∆t′ is the dimensionless time difference between time steps.

The dimensionless form of the particle velocity is defined as presented by Eq.
3.19.

v′ =
v

Uc

(3.19)
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Chapter 4

Numerical Methods

In this work, it is necessary to solve a multiphase flow case that has two phases,
gas and solid. The phases will be treated as uncoupled, solving firstly the fluid phase
and, after that, solving the solid phase using the results that were get for the fluid
phase. So, different numerical methods will be used to solve the equations of each
phase. The fluid phase will be solved using the Finite Element Method while the
solid phase equations will be solved using the Runge-Kutta method.

4.1 Finite Element Method

4.1.1 Weak Form

The main parts of the Finite Element Method are establishing the weak form of
the problem and obtaining an approximated solution for this weak form by using
some special functions [34]. So, firstly, it is necessary to obtain the weak formulation
of the governing equations of the problem.

In order to establish the weak formulation, two classes of function are neces-
sary. The first one is constituted by trial solutions, which are functions that satisfy
boundary conditions and that have square-integrable derivatives [34]. The velocity
vector u and the pressure P are trial solutions in this work.

The other class of function is the weighting function class. The weighting func-
tions also must have derivatives that are square-integrable. However, unlike the trial
solutions, the weighting functions must be equal to zero on the problem boundary
[34].

It is necessary to obtain the weak form of the governing equations. So, since the
governing equations are presented by Eq. 3.4 and Eq. 3.9, it is necessary to operate
them with weighting functions and to integrate them over the domain. Then, if q and
w are weighting functions, the following equations are obtained by this operation:
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∫
Ω

q(∇ · u′)dΩ = 0 (4.1)

∫
Ω

w · Du′

Dt
dΩ = −

∫
Ω

w ·∇P ′dΩ +
1

Re

∫
Ω

w ·∇2u′dΩ +
1

Fr2

∫
Ω

w · g′dΩ

−
∫
Ω

w · (Di1u
′ +Di2|u′|u′)εdΩ

(4.2)

Where q and w are the weighting functions and Ω is the domain of the problem.
Also, u′ is the dimensionless velocity vector, P ′ is the dimensionless pressure, Re

is the Reynolds number, Fr is the Froude number, g′ is the dimensionless gravity
vector, Di1 and Di2 are dimensionless groups defined by Eq. 3.10 and Eq. 3.11 and
ε is a penalty coefficient.

Looking at the last term of Eq. 4.2, the term related to the porous medium,
there is a penalty coefficient whose function is to make this term disappear in the
fluid region. This fluid region can be understood as a subdomain of the problem.
Moreover, the problem can be divided into two subdomains: a fluid domain and a
porous domain. So, since the porous related term disappears in the fluid domain,
this term can be rewritten as follows:∫

Ω

w · (Di1u
′ +Di2|u′|u′)εdΩ =

∫
Ωp

w · (Di1u
′ +Di2|u′|u′)dΩp (4.3)

Where Ω refers to the entire domain while Ωp refers to the porous domain.
Still looking to Eq. 4.2, integrating by parts the pressure and laplacian terms

and also using the divergence theorem, the following relations are obtained:∫
Ω

w ·∇P ′dΩ = −
∫
Ω

P ′(∇ ·w)dΩ +

∫
Γ

P ′w · ndΓ (4.4)

∫
Ω

w ·∇2u′dΩ = −
∫
Ω

∇wT : ∇u′dΩ +

∫
Γ

w ·∇u′ · ndΓ (4.5)

Where Γ is the boundary surface of the problem domain Ω and n is the normal
vector to the boundary surface Γ.

Substituting Eq. 4.3, Eq. 4.4 and Eq. 4.5 into the Eq. 4.2, the following one is
obtained:

20



∫
Ω

w · Du′

Dt′
dΩ =

∫
Ω

P ′(∇ ·w)dΩ−
∫
Γ

P ′w · ndΓ +
1

Re

(
−
∫
Ω

∇wT : ∇u′dΩ+

+

∫
Γ

w ·∇u′ · ndΓ
)
+

1

Fr2

∫
Ω

w · g′dΩ−
∫
Ωp

w · (Di1u
′ +Di2|u′|u′)dΩp

(4.6)
So, Eq. 4.1 and Eq. 4.6 are, respectively, the weak form of Eq. 3.4 and Eq. 3.9,

which are the governing equations of the problem. However, in this work, the only
types of boundary conditions that are going to be used are Dirichlet and Neumann
homogeneous, and for these types, the boundary terms, represented by an integral
over Γ, are going to be equal to zero. So, these terms will be neglected in this work.

∫
Ω

w · Du′

Dt′
dΩ =

∫
Ω

P ′(∇ ·w)dΩ− 1

Re

∫
Ω

∇wT : ∇u′dΩ +
1

Fr2

∫
Ω

w · g′dΩ

−
∫
Ωp

(Di1 +Di2|u′|)(w · u′)dΩp

(4.7)

Then, Eq. 4.1 and Eq. 4.7 are the equations that are going to be discretized
by the Finite Element Method. But, before applying the discretization process, it
is interesting to rewrite Eq. 4.1 and Eq. 4.7 for clarity reasons. The equations
can be rewritten as functions of the vectors components, that is u′ = [u′

1 u′
2 u′

3]
T ,

g′ = [g′1 g′2 g′3]
T and w = [w1 w2 w3]

T , as presented by the following equations.∫
Ω

q
∂u′

1

∂x′
1

dΩ +

∫
Ω

q
∂u′

2

∂x′
2

dΩ +

∫
Ω

q
∂u′

3

∂x′
3

dΩ = 0 (4.8)

∫
Ω

(
w1

Du′
1

Dt′
+ w2

Du′
2

Dt′
+ w3

Du′
3

Dt′

)
dΩ =

∫
Ω

P ′
(
∂w1

∂x′
1

+
∂w2

∂x′
2

+
∂w3

∂x′
3

)
dΩ

− 1

Re

∫
Ω

(
∂w1

∂x′
1

∂u′
1

∂x′
1

+
∂w1

∂x′
2

∂u′
1

∂x′
2

+
∂w1

∂x′
3

∂u′
1

∂x′
3

+
∂w2

∂x′
1

∂u′
2

∂x′
1

+
∂w2

∂x′
2

∂u′
2

∂x′
2

+

∂w2

∂x′
3

∂u′
2

∂x′
3

+
∂w3

∂x′
1

∂u′
3

∂x′
1

+
∂w3

∂x′
2

∂u′
3

∂x′
2

+
∂w3

∂x′
3

∂u′
3

∂x′
3

)
dΩ +

1

Fr2

∫
Ω

(w1g
′
1+

w2g
′
2 + w3g

′
3)dΩ−

∫
Ωp

(Di1 +Di2|u′|)(w1u
′
1 + w2u

′
2 + w3u

′
3)dΩp

(4.9)

Furthermore, it is possible to note that, if Eq. 4.10, Eq. 4.11, and 4.12 were
satisfied, Eq. 4.9 will also be satisfied. So, it is possible to solve Eq. 4.9 by splitting
it into the directions x1, x2, and x3, presented by, respectively, Eq. 4.10, Eq. 4.11,
and 4.12
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∫
Ω

w1
Du′

1

Dt′
dΩ =

∫
Ω

P ′∂w1

∂x′
1

dΩ− 1

Re

∫
Ω

(
∂w1

∂x′
1

∂u′
1

∂x′
1

+
∂w1

∂x′
2

∂u′
1

∂x′
2

+

∂w1

∂x′
3

∂u′
1

∂x′
3

)
dΩ +

1

Fr2

∫
Ω

w1g
′
1dΩ−

∫
Ωp

(Di1 +Di2|u′|)w1u
′
1dΩp

(4.10)

∫
Ω

w2
Du′

2

Dt′
dΩ =

∫
Ω

P ′∂w2

∂x′
2

dΩ− 1

Re

∫
Ω

(
∂w2

∂x′
1

∂u′
2

∂x′
1

+
∂w2

∂x′
2

∂u′
2

∂x′
2

+

∂w2

∂x′
3

∂u′
2

∂x′
3

)
dΩ +

1

Fr2

∫
Ω

w2g
′
2dΩ−

∫
Ωp

(Di1 +Di2|u′|)w2u
′
2dΩp

(4.11)

∫
Ω

w3
Du′

3

Dt′
dΩ =

∫
Ω

P ′∂w3

∂x′
3

dΩ− 1

Re

∫
Ω

(
∂w3

∂x′
1

∂u′
3

∂x′
1

+
∂w3

∂x′
2

∂u′
3

∂x′
2

+

∂w3

∂x′
3

∂u′
3

∂x′
3

)
dΩ +

1

Fr2

∫
Ω

w3g
′
3dΩ−

∫
Ωp

(Di1 +Di2|u′|)w3u
′
3dΩp

(4.12)

4.1.2 Galerkin Method

After the definition of the weak formulation of the problem, it is necessary a
method to obtain an approximate solution for it. The method that is going to be
used is the Galerkin Method.

This method is only going to be used in the spatial domain while the temporal
term is going to be discretized by another method that will be discussed later. So,
because of that, the temporal term will remain a continuous variable for now.

Accordingly to HUGHES [34], the first step is to discretize the continuous domain
in a finite number of elements. So, the weak form of the problem, presented by Eq.
4.8, Eq. 4.10, Eq. 4.11, and Eq. 4.12, must be solved for each element. This
transformation is represented by the following equations:

NE∑
e

(∫
Ωe

q
∂u′

1

∂x′
1

dΩ +

∫
Ωe

q
∂u′

2

∂x′
2

dΩ +

∫
Ωe

q
∂u′

3

∂x′
3

dΩ

)
= 0 (4.13)

NE∑
e

∫
Ωe

w1
Du′

1

Dt′
dΩ =

NE∑
e

∫
Ωe

P ′∂w1

∂x′
1

dΩ− 1

Re

NE∑
e

∫
Ωe

(
∂w1

∂x′
1

∂u′
1

∂x′
1

+

∂w1

∂x′
2

∂u′
1

∂x′
2

+
∂w1

∂x′
3

∂u′
1

∂x′
3

)
dΩ +

1

Fr2

NE∑
e

∫
Ωe

w1g
′
1dΩ−

NE∑
e

∫
Ωe

p

(Di1 +Di2|u′|)w1u
′
1dΩp

(4.14)
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NE∑
e

∫
Ωe

w2
Du′

2

Dt′
dΩ =

NE∑
e

∫
Ωe

P ′∂w2

∂x′
2

dΩ− 1

Re

NE∑
e

∫
Ωe

(
∂w2

∂x′
1

∂u′
2

∂x′
1

+

∂w2

∂x′
2

∂u′
2

∂x′
2

+
∂w2

∂x′
3

∂u′
2

∂x′
3

)
dΩ +

1

Fr2

NE∑
e

∫
Ωe

w2g
′
2dΩ−

NE∑
e

∫
Ωe

p

(Di1 +Di2|u′|)w2u
′
2dΩp

(4.15)

NE∑
e

∫
Ωe

w3
Du′

3

Dt′
dΩ =

NE∑
e

∫
Ωe

P ′∂w3

∂x′
3

dΩ− 1

Re

NE∑
e

∫
Ωe

(
∂w3

∂x′
1

∂u′
3

∂x′
1

+

∂w3

∂x′
2

∂u′
3

∂x′
2

+
∂w3

∂x′
3

∂u′
3

∂x′
3

)
dΩ +

1

Fr2

NE∑
e

∫
Ωe

w3g
′
3dΩ−

NE∑
e

∫
Ωe

p

(Di1 +Di2|u′|)w3u
′
3dΩp

(4.16)

Where e refers to the element, NE to the total number of elements, Ωe to the
element domain, and Ωe

p to the domain of the elements which are in the porous
region.

After that, it is necessary to get a discrete approximation for the variables. To
achieve that, it is used interpolation functions, or shape functions, represent the
value of the variables along the element. The problem variables discretized are
presented by the following equation.

u1 =
NV∑
i

Niu1i, u2 =
NV∑
i

Niu2i, u3 =
NV∑
i

Niu3i, P =
NP∑
i

LiPi,

w1 =
NV∑
i

Niw1i, w2 =
NV∑
i

Niw2i, w3 =
NV∑
i

Niw3i, q =
NP∑
i

Liqi

(4.17)

Where NV is the number of velocity nodes, NP is the number of pressure nodes,
and Ni and Li are interpolation functions.

Then, substituting Eq. 4.17 in Eq. 4.13, Eq. 4.14, Eq. 4.15, and Eq. 4.16, it is
obtained a linear system, presented by Eq. 4.18, Eq. 4.19, Eq. 4.20 and Eq. 4.21.
It is important to note that qi, w1i, w2i, and w3i were eliminated since they would be
multiplying every term of Eq. 4.18, Eq. 4.19, Eq. 4.20 and Eq. 4.21, respectively.
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NE∑
e

(∫
Ωe

NP∑
i

NV∑
j

Li
∂Nj

∂x′
1

u1jdΩ +

∫
Ωe

NP∑
i

NV∑
j

Li
∂Nj

∂x′
2

u2jdΩ+

∫
Ωe

NP∑
i

NV∑
j

Li
∂Nj

∂x′
3

u3jdΩ

)
= 0

(4.18)

NE∑
e

(∫
Ωe

NV∑
i

NV∑
j

NiNj
Du1j

Dt′
dΩ +

1

Re

∫
Ωe

NV∑
i

NV∑
j

(
∂Ni

∂x′
1

∂Nj

∂x′
1

+
∂Ni

∂x′
2

∂Nj

∂x′
2

+
∂Ni

∂x′
3

∂Nj

∂x′
3

)
u1jdΩ +

∫
Ωe

p

NV∑
i

NV∑
j

(Di1 +Di2|u′|)NiNju1jdΩp

−
∫
Ωe

NV∑
i

NP∑
j

∂Ni

∂x′
1

LjPjdΩ

)
=

NE∑
e

1

Fr2

∫
Ωe

NV∑
i

NV∑
j

NiNjg1jdΩ

(4.19)

NE∑
e

(∫
Ωe

NV∑
i

NV∑
j

NiNj
Du2j

Dt′
dΩ +

1

Re

∫
Ωe

NV∑
i

NV∑
j

(
∂Ni

∂x′
1

∂Nj

∂x′
1

+
∂Ni

∂x′
2

∂Nj

∂x′
2

+
∂Ni

∂x′
3

∂Nj

∂x′
3

)
u2jdΩ +

∫
Ωe

p

NV∑
i

NV∑
j

(Di1 +Di2|u′|)NiNju2jdΩp

−
∫
Ωe

NV∑
i

NP∑
j

∂Ni

∂x′
2

LjPjdΩ

)
=

NE∑
e

1

Fr2

∫
Ωe

NV∑
i

NV∑
j

NiNjg2jdΩ

(4.20)

NE∑
e

(∫
Ωe

NV∑
i

NV∑
j

NiNj
Du3j

Dt′
dΩ +

1

Re

∫
Ωe

NV∑
i

NV∑
j

(
∂Ni

∂x′
1

∂Nj

∂x′
1

+
∂Ni

∂x′
2

∂Nj

∂x′
2

+
∂Ni

∂x′
3

∂Nj

∂x′
3

)
u3jdΩ +

∫
Ωe

p

NV∑
i

NV∑
j

(Di1 +Di2|u′|)NiNju3jdΩp

−
∫
Ωe

NV∑
i

NP∑
j

∂Ni

∂x′
3

LjPjdΩ

)
=

NE∑
e

1

Fr2

∫
Ωe

NV∑
i

NV∑
j

NiNjg3jdΩ

(4.21)

The previous linear system can be presented in a matrix form, as presented by
the following equations:

[Dx]{u1}+ [Dy]{u2}+ [Dz]{u3} = 0 (4.22)

[M ]
D{u1}
Dt′

+
1

Re
[K]{u1}+(Di1+Di2[U ])[Mp]{u1}− [Gx]{p} =

1

Fr2
[M ]{g1} (4.23)
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[M ]
D{u2}
Dt′

+
1

Re
[K]{u2}+(Di1+Di2[U ])[Mp]{u2}− [Gy]{p} =

1

Fr2
[M ]{g2} (4.24)

[M ]
D{u3}
Dt′

+
1

Re
[K]{u3}+(Di1+Di2[U ])[Mp]{u3}− [Gz]{p} =

1

Fr2
[M ]{g3} (4.25)

Where {u1} is a column vector containing the value for velocity in x1 direction for
all velocity nodes, {u2} contain value of velocity in x2 direction, {u3} contain value
of velocity in x3 direction, {g1}, {g2}, and {g3} contains all values of the gravity
vector in direction x1, x2, and x3, respectively, and {p} contains pressure value for
all pressure nodes.

[M ] is the mass matrix, [K] is the stiffness matrix, [Gx], [Gy], and [Gz] are part
of the gradient matrix related to, respectively, x1, x2, and x3 direction. Moreover,
there are the matrices [Dx], [Dy], and [Dz] which are defined as [Dx] = [Gx]

T ,
[Dy] = [Gy]

T , and [Dz] = [Gz]
T . There is also [U ], a diagonal matrix containing the

velocity module value.
Finally, there is the [Mp] which is the mass matrix relative only to the porous

region. In other words, this means that the [Mp] terms relative to the elements that
are in the porous domain are equal to their related terms in [M ], while the terms
relative to the elements outside the porous domain are going to be equal zero, unlike
the related terms in [M ].

The matrices [M ], [K], [Gx], [Gy], and [Gz] are, respectively, assembles of the
elementary sub-matrices [me], [ke], [gex], [gey], and [gez], which are presented by the
following equations.

[me] =

∫
Ωe

NV∑
i

NV∑
j

NiNjdΩ, (4.26)

[ke] =

∫
Ωe

NV∑
i

NV∑
j

(
∂Ni

∂x′
1

∂Nj

∂x′
1

+
∂Ni

∂x′
2

∂Nj

∂x′
2

)
dΩ (4.27)

[gex] =

∫
Ωe

NV∑
i

NP∑
j

∂Ni

∂x′
1

LjdΩ (4.28)

[gey] =

∫
Ωe

NV∑
i

NP∑
j

∂Ni

∂x′
2

LjdΩ (4.29)

[gez] =

∫
Ωe

NV∑
i

NP∑
j

∂Ni

∂x′
3

LjdΩ (4.30)
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Moreover, the matrix [Mp] is an assembly of the sub-matrix [me] for all e that
belong to the porous region. Then, [Mp] is defined as an assemble of the sub-matrix
[me

p] presented in Eq. 4.31.

[me
p] =

∫
Ωe

p

NV∑
i

NV∑
j

NiNjdΩ, (4.31)

4.1.3 Mesh Element

As already seen, in the Finite Element Method the domain is discretized in sub-
regions called elements, and it is in these elements where the differential equations
are approximated by shape functions. Therefore, the elements approximation can
be classified by the element shape and by the order of the approximation [35].

The proper choice of the elements has great importance in CFD since it is re-
sponsible for the coupling of velocity and pressure and it also must satisfy the
Ladyzhenskaya-Babouska-Brezzi, or just LBB, stability condition [36]. Therefore,
in this work, it will be used the MINI and quadratic triangular elements for the
two-dimensional cases and the tetrahedron MINI element for the three-dimensional
cases, since all these elements satisfy the LBB condition.

The triangle MINI element is composed of 3 pressure nodes, which are located
at the triangle vertices, and 4 velocity nodes, located at the triangle vertices and
its centroid. The triangle quadratic element has 3 pressure nodes located at the
vertices and 6 velocity nodes located in the vertices and in the edges mid-points.
Finally, the tetrahedron MINI element has 4 pressure nodes located at its vertices
and 5 velocity nodes located at the vertices and at its centroid. All these elements
are presented schematically in Figure 4.1.

The functions Li and Ni are responsible for interpolating the pressure and ve-
locity, respectively, along the element. In the triangular elements, the Li functions
are the triangle barycentric coordinates concerning its vertices i = 1, 2, 3. For the
triangle MINI element, the Ni is defined as presented by Eq. 4.32.

Ni = Li − 9L1L2L3, for i = 1, 2, 3

N4 = 27L1L2L3

(4.32)

For the triangle quadratic element, these functions are defined as presented by
Eq. 4.33.
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(a) Triangle MINI used 2D cases. (b) Triangle Quadratic used in 2D cases.

(c) Tetraedron MINI used in 3D cases.

Figure 4.1: Elements’ representation.
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Ni = (2Li − 1)Li, for i = 1, 2, 3

N4 = 4L1L2

N5 = 4L2L3

N6 = 4L1L3

(4.33)

For three-dimensional simulations, the tetrahedron MINI element, the Li func-
tions are the tetrahedron barycentric coordinates and the Ni functions are based on
them and presented by Eq. 4.34.

Ni = Li − 64L1L2L3L4, for i = 1, 2, 3, 4

N5 = 256L1L2L3L4

(4.34)

Finally, equations 4.26 to 4.30 were solved analytically for the triangle and tetra-
hedron MINI elements while they were solved numerically for the triangle quadratic
element by using the Gaussian quadrature.

4.1.4 Semi-Lagrangian Method

After the application of the Galerkin method, the spatial terms are already
discretized while the temporal term remains continuous. The temporal term, which
is the term with material derivative, can be discretized by using the semi-Lagrangian
method.

The semi-Lagrangian method is based on the Lagrangian coordinates, a system
of coordinates that describe the fluid flow by following the fluid particles along its
trajectory. Therefore, it would be possible to simulate the flow using these pure
Lagrangian coordinates by updating the mesh at each time step accordingly to the
particle trajectory. However, this approach could be very problematic since the
particle’s trajectory may be chaotic even for low Reynolds flow [36].

Then, to avoid this problem, the semi-Lagrangian method calculates the compu-
tational nodes’ previous position in Lagrangian coordinates using the current time
step velocity field and, after that, re-initializes the mesh at the next time step, re-
covering the original mesh. So, this method consists in approximating the material
derivative of some variable using its values at the current and previous time steps
and considering the different nodes’ position at each time step. This approximation
can be done by using an implicit first-order scheme as presented by Eq. 4.35 [36].

Dα

Dt
=

αn+1 − αn
d

∆t
(4.35)

Where α is some random variable, ∆t is the time between each time step, the su-
perscripts n+1 and n refer to the next time step and current time step, respectively,
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and the subscript d refers to the position from which the computational nodes have
departed.

Moreover, the position of the departed nodes can be calculated by Eq. 4.36,
where xn

d is the position of the departed nodes, xn+1 is the current mesh nodes
position and un the current velocity.

xn
d = xn+1 − un∆t (4.36)

After calculating the departed node position xn
d, it is necessary to calculate the

variable value at this position αn
d . This calculation is made by interpolating the αn

values at the nodes of the element which contains xn
d. So, first is necessary to find

the element where the departed position is located.
In order to find this element, a search procedure is carried out. This procedure

works firstly by locating the elements which contain the position of the current node
xn+1. After that, it is calculated which of these elements is closest to xn

d by using
area coordinates. Then, if the found element does not contain xn

d, its neighboring
elements are located and it is calculated the one which is closest to xn

d. Furthermore,
this process is carried out repeatedly until it is found the element containing xn

d.
There is a special case for this method that occurs when the departed node po-

sition is out of the problem domain. In this situation there is no element containing
the departed node position, making it impossible to use the presented approach to
calculate the variable value at the departure position. So, in this situation, the
departure position variable value is adopted to be such as the one defined by the
boundary condition of the closest boundary to the departure position.

Figure 4.2 presents a schematic representation of this procedure. In the figure, it
is shown the current node position xn+1 and the departed node position xn

d with a red
arrow representing the node displacement calculated by −un∆t. Besides that, the
grey elements are the elements that the searching procedure needs to pass through
until found the element containing the departed node is. Therefore, it is possible to
realize that only a few elements need to be tracked to find the aimed one, reducing
the computational effort.

Finally, it is possible to apply the semi-Lagrangian method to discretize the
remaining temporal term in the governing equations. Then, after applying the
method on Eq. 4.23, Eq. 4.24, and 4.25, the following discretized equations are
obtained and can be used to solve the problem:

(
[M ]

∆t′
+

[K]

Re
+ (Di1 +Di2[U ])[M ]

)
{un+1

1 } − [Gx]{p} =
[M ]

∆t′
{un

1d}+
1

Fr2
[M ]{g1}

(4.37)
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Figure 4.2: Schematic representation of the searching procedure used in the semi-
Lagrangian method to find the element containing the departed node position.

(
[M ]

∆t′
+

[K]

Re
+ (Di1 +Di2[U ])[M ]

)
{un+1

2 } − [Gy]{p} =
[M ]

∆t′
{un

2d}+
1

Fr2
[M ]{g2}

(4.38)

(
[M ]

∆t′
+

[K]

Re
+ (Di1 +Di2[U ])[M ]

)
{un+1

3 } − [Gz]{p} =
[M ]

∆t′
{un

3d}+
1

Fr2
[M ]{g3}

(4.39)
Where [M ] is the mass matrix, [K] is the stiffness matrix, [U ] is a diagonal

matrix containing the velocity module value at time step n, [Gx], [Gy], and [Gz]

are part of the gradient matrix related to, respectively, x1, x2, and x3 direction.
Moreover, {un+1

1 }, {un+1
2 }, and {un+1

3 } are the vectors of velocity at x1, x2, and x3

direction, respectively, at time step n+1, {un+1
1d }, {un+1

2d }, and {un+1
3d } are the vector

of velocity at x1, x2, and x3 direction, respectively, at the departed node position in
the time step n, {p} is the pressure vector and {g1}, {g2}, and {g3} are the gravity
vectors at x1, x2, and x3 direction, respectively. Finally, ∆t′ is the dimensionless
time variation, Re is the Reynolds number, Di1 and Di2 are two dimensionless
groups defined by Eq. 3.10 and Eq. 3.11, respectively, and Fr is the Freud number.
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4.2 Runge-Kutta Method

Runge-Kutta methods are a family of numerical methods used to solve ordinary
differential equations that have the form of dy

dx
= f(x, y). This method is based on

Taylor series, but with no need for higher derivatives calculation. The most popular
of these methods is the Fourth-Order Runge-Kutta, which will be the one used in
this work [37].

The most common form of the Fourth-Order Runge-Kutta, which is the one used
in this work, is presented by Eq. 4.40, where y and x are related to the ordinary
differential equations form mentioned in the previous paragraph, h is the difference
between steps and the subscript i refers to the steps.

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4)

k1 = f(xi, yi)

k2 = f

(
xi +

h

2
, yi +

h

2
k1

)
k3 = f

(
xi +

h

2
, yi +

h

2
k2

)
k4 = f(xi + h, yi + k3h)

(4.40)

Then, it is possible to apply the Fourth-Order Runge-Kutta in the particle mo-
tion equation, presented by Eq. 3.18, and the new equation that will be solved after
the method application, is presented by Eq. 4.41.

v′
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i = v′

n
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∆t′

6
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√
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(4.41)

Moreover, the most important particle feature, in this case, is its position. There-
fore, after the calculation of the particle velocity, it is necessary to calculate its po-
sition through Eq. 4.42, where x′

p is the particle position in its dimensionless form
and subscript i refers to the main directions of the problem.

dx′
pi

dt′
= v′i (4.42)
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Then, it applies Fourth-Order Runge-Kutta again in Eq. 4.42, and Eq. 4.43 is
obtained to solve approximately the particle position based on its velocity that was
already calculated.

x′
p
n+1

i
= x′

p
n

i
+∆t′

(
v′n+1

i − v′ni
2

)
(4.43)
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Chapter 5

Code Verification

Since it has been used in-house codes to run the simulations in this work, it is
necessary to verify them to guarantee that the results provided are reliable. In order
to do that, they were used to run some cases found in the literature and the results
obtained in this work and in the literature were compared.

Firstly, it was carried out simulations for problems that only have a fluid domain,
ensuring that the code is capable to solve the classical Navier-Stokes equations.
After that, it was simulated a case that also comprises a porous domain, verifying
the code for a problem with both regions. This verification process was made for
two-dimensional and three-dimensional problems.

5.1 Two-Dimensional

5.1.1 Plane Poiseuille Flow

The plane Poiseuille flow may be one of the simplest and most famous fluids
mechanics cases. This case consists of a flow between two parallel flat plates where
the inlet velocity is constant and parallel to the plates. This problem is presented
schematically in Figure 5.1 and its boundary conditions are constant velocity at
the inlet of the domain’s left, null velocity condition at the top and bottom plates,
and null pressure condition in the outlet located on the right. The boundaries are
indicated in the figure and their respective conditions are mathematically defined in
Table 5.1.

Boundary Horizontal Velocity Vertical Velocity Pressure
Inlet u1 = 1 u2 = 0 ∇P · n = 0
Wall u1 = 0 u2 = 0 ∇P · n = 0

Outlet ∇u1 · n = 0 ∇u2 · n = 0 P = 0

Table 5.1: Boundary Conditions of the Plane Poiseuille problem.
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Figure 5.1: Schematic representation of Plane Poiseuille Flow case.

Simulations were carried out for a plane Poiseuille flow case with Re = 1000 and
the gravity term neglected. It was run simulations using the MINI and the quadratic
elements (see Sec 4.1.3 for more details). For the MINI’s case, it was used a mesh
with 31110 triangle elements, 16176 pressure nodes, and 47286 velocity nodes, while
for the quadratic case, it was used 20888 triangle elements, 10865 pressure nodes,
and 42617 velocity nodes.

Then, the horizontal velocity in the fully developed region results obtained for
each case was plotted along with the analytical solution, which can be found at
the work of BATCHELOR [30]. These results are shown in Figure 5.2, where it
is possible to see that both simulation results are close to the analytical solution
and that the quadratic element had provided results even closer to the analytical
solution, despite using a mesh with a smaller amount of elements and nodes.

Since this is a simple case to simulate, it would be expected that the simulation
results were closer to the analytical solution in such a way that the graphic curves
should be overlapping each other. However, this agreement was not reached due to
the boundary conditions imposed in the inlet. The constant velocity condition was
imposed in the domain’s inlet but with the interception points of the inlet and the
plates having a wall condition applied to them. Then, the simulated cases hadn’t
the same mass influx than it was considered in the analytical solution, which lead
to the error that can be observed in the figure.

5.1.2 Lid Driven Flow

The lid driven case consists in a square cavity where the top surface moves
with a constant velocity while the other surfaces remain stationary. This problem
is presented schematically in Figure 5.3 and its boundary conditions are constant
velocity on the top surface and wall condition on the other surfaces. Moreover, a
boundary condition of null pressure in the bottom right corner was also used in
the simulations. The boundaries are indicated in the figure and their respective
conditions are mathematically defined in Table 5.2.

This case was simulated for Re = 10, Re = 100, and Re = 1000 with the
gravity term neglected using triangle MINI and quadratic elements. Then, the
results obtained by these simulations were compared with the results provided by
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Figure 5.2: Comparison between simulation and analytical results for Plane
Poiseuille Flow case.

Figure 5.3: Schematic representation of Lid Driven Flow case.

Boundary Horizontal Velocity Vertical Velocity Pressure
Top Surface u1 = 1 u2 = 0 ∇P · n = 0

Wall u1 = 0 u2 = 0 ∇P · n = 0
Null Pressure ∇u1 · n = 0 ∇u2 · n = 0 P = 0

Table 5.2: Boundary Conditions of the Lid Driven Flow problem.
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the work of MARCHI et al [38].
Firstly, for the Re = 10 case, the mesh with MINI elements had 6624 trian-

gle elements, 3413 pressure nodes, and 10037 velocity nodes, while the mesh with
quadratic elements had the same amount of triangle elements and pressure nodes,
but with 13449 velocity nodes since edge nodes are present in such a high-order el-
ement. The results of both simulations in comparison with the reference results are
presented in Figure 5.4 where it is possible to see that they are in good agreement.
Moreover, it is also possible to see that the quadratic mesh has provided results
closer to the reference than the MINI mesh using the same amount of elements, but
with more velocity nodes, which means more computational effort.

(a) u1 along x2 for x1 = 0.5. (b) u2 along x1 for x2 = 0.5.

Figure 5.4: Results obtained by simulations and literature for Re = 10 for the Lid
Driven Flow case.

Then, for the Re = 100 case, it was used the same meshes that were used for
Re = 10. The results are presented in Figure 5.5 and once more time it is possible
to see a good agreement between them with the quadratic element providing results
closer to the reference.

(a) u1 along x2 for x1 = 0.5. (b) u2 along x1 for x2 = 0.5.

Figure 5.5: Results obtained by simulations and literature for Re = 100 for the Lid
Driven Flow case.
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Finally, for the Re = 1000 case, it was used a mesh with MINI elements con-
taining 105584 elements, 53193 pressure nodes, and 158777 velocity nodes, and a
mesh with quadratic elements containing 26426 elements, 13414 pressure nodes, and
53253 velocity nodes. The results are presented in Figure 5.6, where it is possible
to see that the MINI elements mesh provided results that deviate from the liter-
ature in some regions while the quadratic elements mesh does not. Besides that,
the quadratic elements mesh has fewer elements and nodes than the MINI elements
mesh. So, for this case, the quadratic element provides more accurate results with
a lower computational effort.

(a) u1 along x2 for x1 = 0.5. (b) u2 along x1 for x2 = 0.5.

Figure 5.6: Results obtained by simulations and literature for Re = 1000 for the Lid
Driven Flow case.

5.1.3 Flow over Porous Region

This case consists of a flow entering a fluid region that is located upon a porous
medium and, then, it exits at both the fluid region and porous medium. Figure 5.7
presents schematically this problem while Table 5.3 shows the boundary conditions
of each domain’s boundary, which are indicated in the figure.

Figure 5.7: Schematic representation of the flow over porous region problem.
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Boundary Horizontal Velocity Vertical Velocity Pressure
F1 u1 = y(4− y) ∇u2 · n = 0 ∇P · n = 0
F2 u1 = 0 u2 = 0 ∇P · n = 0
F3 ∇u1 · n = 0 ∇u2 · n = 0 P = 0
P1 u1 = 0 ∇u2 · n = 0 ∇P · n = 0
P2 ∇u1 · n = 0 u2 = 0 ∇P · n = 0
P3 ∇u1 · n = 0 ∇u2 · n = 0 P = 0

Table 5.3: Boundary Conditions of the flow over a porous region problem.

The simulations were carried out for Re = 6.38, Fr = 102, Di1 = 0.42 and Di2 =

0.82 using MINI and quadratic elements. The mesh with MINI elements has 92418
elements, 46780 pressure nodes, and 139198 velocity nodes, while the quadratic
mesh has 22834 elements, 11703 pressure nodes, and 46239 velocity nodes. Finally,
it was possible to compare the simulation results with the results of CIMOLIN AND
DISCACCIATI [13].

Figure 5.8 presents the results of simulations and the reference work for the hor-
izontal velocity at the problem’s outlet and the vertical velocity along the interface
between the fluid and porous regions. Looking at the figure, firstly, it is possible to
see that the results of simulations with both element types are in good agreement
with the literature for horizontal velocity. However, it is possible to see a disagree-
ment between the simulation results and the reference for the vertical velocity in the
entry region of the domain. This disagreement can be explained by the fact that
the interface is usually a complicated region which can bring some numerical errors.

(a) u1 along x2 at the outlet. (b) u2 along x1 at the interface.

Figure 5.8: Results obtained by simulations and literature for the flow over porous
region problem.

Then, it is possible to conclude that, despite the errors in the interface of the
problem, the code provides accurate results. However, an investigation of some
improvements that can be done in the code to achieve a better solution for the
interface region would be interesting to be done in the future. Another important
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adjustment that can be done is to make some refinements in the mesh in the interface.

5.2 Three-Dimensional

5.2.1 Hagen-Poiseuille

The Hagen-Poiseuille case is another fluid mechanic’s classic problem, which
consists of a flow inside a long tube with a circular section. This case is presented
in Figure 5.9 and its boundary conditions are constant velocity at the inlet, null
pressure at the outlet, and no-slip and non-penetrating condition on the wall. The
boundaries are indicated in the figure and their respective conditions are mathemat-
ically defined in Table 5.4.

Figure 5.9: Schematic representation of the Hagen-Poiseuille case.

Boundary u1 u2 u3 P

Inlet u1 = 1 u2 = 0 u3 = 0 ∇P · n = 0
Wall u1 = 0 u2 = 0 u3 = 0 ∇P · n = 0

Outlet ∇u1 · n = 0 ∇u2 · n = 0 ∇u3 · n = 0 P = 0

Table 5.4: Boundary Conditions of the Hagen-Poiseuille problem.

A simulation was carried out for this case for Re = 10 and with the gravity
term neglected. The mesh used for this simulation was made by tetrahedron MINI
elements and had 482488 tetrahedron elements, 88188 pressure nodes, and 570676
velocity nodes.
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Then, the results obtained in this simulation for the axial velocity in the fully
developed region are plotted along with the analytical solution, which can be found
at the work of BATCHELOR [30], in Figure 5.10. In this figure, it is possible to see
that both results are in good agreement. Moreover, it is possible to see that there
is a undershoot of the simulation results in comparison with the analytical solution.

This error can be explained in the same way that was done for the Plane Poiseuille
case. The constant velocity condition was applied at the entire problem’s inlet except
for the inlet’s contour, where there is an interception between the inlet and the wall
of the domain and where it was applied the null velocity condition. Then, the mass
influx of the simulated case is not exactly the same that the one considered in the
analytical solution.

Figure 5.10: Comparison between simulation and analytical results for Hagen-
Poiseuille case.

5.2.2 Square Duct with a Moving Top Wall

This case consists of a duct with a square cross-section and with its top wall
moving at a constant velocity. Figure 5.11 shows schematically this problem with
its boundary conditions of constant velocity in the inlet, null pressure in the outlet,
constant velocity in the top surface with the same value as the inlet velocity, and
wall condition in the remaining surfaces. The boundaries are indicated in the figure
and their respective conditions are mathematically defined in Table 5.5.

A case with the gravity term neglected and Re = 10 was simulated with a
mesh made by tetrahedron MINI elements. This mesh has 343630 elements, 64331
pressure nodes, and 407961 velocity nodes.

Figure 5.12 shows the isolines of the velocity at the x1 direction in the fully
developed region that was provided by the simulation in comparison with the ones
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Figure 5.11: Schematic representation of the square duct with a moving top wall
problem.

Boundary u1 u2 u3 P

Inlet u1 = 1 u2 = 0 u3 = 0 ∇P · n = 0
Moving Wall u1 = 1 u2 = 0 u3 = 0 ∇P · n = 0

Wall u1 = 0 u2 = 0 u3 = 0 ∇P · n = 0
Outlet ∇u1 · n = 0 ∇u2 · n = 0 ∇u3 · n = 0 P = 0

Table 5.5: Boundary Conditions of the Square Duct with a Moving Top Wall prob-
lem.

41



found in the work of OWOLABI [39]. In the figure, the results are presented for a
velocity range of 0.3 to 1.5 with increments of 0.3. Moreover, the X marks represent
the simulation results while the lines represent the results of the reference work.
Then, it is possible to see that the results are in good agreement.

Figure 5.12: Comparison between simulation and reference results for the square
duct with moving top wall problem.

5.2.3 Flow over Porous Region

This case consists of an adaptation of the problem with the same name in the
two-dimensional section for a three-dimensional case. Then, the problem is equal
to the other one, with extrusion of the original domain in the x3 direction and with
boundary conditions of symmetry in the surfaces in this direction.

The simulations were carried out for the same parameters as the two-dimensional
case (Re = 6.38, Fr = 102, Di1 = 0.42, and Di2 = 0.82) using a mesh with
tetrahedron MINI elements. The mesh has 2368597 elements, 437319 pressure nodes,
and 2805916 velocity nodes.

Figure 5.8 presents the results of simulations and the reference work, which is the
same one that was used in the two-dimensional case, for the horizontal velocity at
the problem’s outlet and the vertical velocity along the interface between the fluid
and porous regions at the center of the domain in the x3 direction. It is possible to
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see that the results are in good agreement with the literature for horizontal velocity,
while there is some disagreement between the results for the vertical velocity in the
interface in the same way that also had in the two-dimensional case. This difference
can be once again explained by the fact that the interface is a region that causes
numerical errors. It would be interesting to search for other methods that can
mitigate this problem in the future.

(a) u1 along x2 at the outlet. (b) u2 along x1 at the interface.

Figure 5.13: Results obtained by simulations and literature for the three-dimensional
flow over porous region problem.
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Chapter 6

DPF Simulations

After the computational code has been verified, it is possible to use it to simulate
the flow inside a DPF, which is this work’s main goal. Then, in this chapter, it will
be shown the model used and the results that were obtained for these simulations.
This information will be presented separately for the two-dimensional and three-
dimensional cases.

6.1 Two Dimensional

6.1.1 Case Set-Up

The DPF consists of many channels disposed of in a regularly spaced arrangement
and, because of that, it is possible to model this device taking only into account
two halves of channels. This simplification can be made due to the symmetry of
the problem, which can be imposed in these two channels by applying symmetry
conditions on the boundaries.

Then, the model which will be simulated is formed by half of a channel where
the air enters, which is located at the top, half of a channel where the air goes out,
which is located at the bottom, and the porous wall that separates these channels.
The top channel is going to be called the inlet channel while the bottom channel
will be called the outlet channel.

Moreover, it is necessary to model not only the DPF itself but also two other
regions along with it, which are going to be called the inlet zone and outlet zone. The
addition of these zones is necessary since it would be difficult to set the boundary
conditions at the inlet and outlet of the device. Then, after this inclusion, it is
possible to set the constant velocity condition far before the DPF and the null
pressure condition far after it.

Figure 6.1 presents schematically the model used to simulate the DPF in two
dimensions. In this figure, it is indicated the porous domain, which is constituted
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by the porous wall located between two adjacent channels, and the fluid domain,
where there is no porous material. Besides that, it is also indicated which model
part is related to the device itself and which parts are the inlet and outlet zones.
The plugs are also presented in the figure. Finally, the greek letter delta indicates
the boundaries of the model.

Figure 6.1: Two-Dimensional DPF Model.

Table 6.1 presents the boundary conditions applied to the problem. It is pre-
sented in this table the type of the boundary condition and its mathematical defi-
nition for each boundary indicated in Figure 6.1.

Type Boundaries u1 u2 P

Inlet δ1 u1 = 1 u2 = 0 ∇P · n = 0
Symmetry δ2, δ6, δ8, δ12 ∇u1 · n = 0 u2 = 0 ∇P · n = 0

Wall δ3, δ4, δ5, δ9, δ10, δ11 u1 = 0 u2 = 0 ∇P · n = 0
Outlet δ7 ∇u1 · n = 0 ∇u2 · n = 0 P = 0

Table 6.1: Boundary Conditions of the two-dimensional DPF model.

6.1.2 Case 1: Air flow

The first DPF case that was simulated was based on the work of KONSTAN-
DOPOULOS et al [25], which had simulated only the air flow using the Navier-Stokes
equations along with the Darcy and Forchheimer terms. In this case, it was only
taken into account the air flow inside the device, not considering the particulates.
Then, the parameters that were adopted for this simulation are presented in Table
6.2

After looking at the parameters of the problem, it is important to define the
characteristic length and velocity. In this case, the characteristic velocity is going to
be the inlet velocity while the characteristic length is the channel width. Therefore,
this problem has Re ≈ 951, confirming that the flow is laminar. Besides that, the
problem also has Fr ≈ 172.
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Parameter Value
Inlet Velocity (m/s) 24.8

Density (kg/m3) 0.54
Dynamic Viscosity (Pa.s) 2.97 x 10−5

Permeability (m2) 2 x 10−13

Inertial Resistance Coefficient (-) 223.1
Channel Width (mm) 2.11
Channel Length (mm) 304.8

Porous Wall Thickness (mm) 0.432

Table 6.2: Parameters used in the simulation of Case 1.

After the definition of the parameters, it is necessary to set the computational
mesh. The mesh was obtained using Gmsh, which is an open-source software that
generates finite element meshes.

Since it was carried out simulations using the MINI and quadratic triangle ele-
ments, it was used two different meshes. In this case, both meshes used the same
elements with a difference in the number of nodes for velocity, with one extra node
for velocity in the centroids of the elements for the MINI mesh and three extra nodes
for velocity in the elements midpoints for the quadratic mesh. Then, both meshes
have 296434 elements and 154501 nodes for pressure. However, while the mesh with
MINI elements has 450935 nodes for velocity, the mesh with quadratic elements has
605435.

The problem domain is very long and, because of that, it would be difficult to
present the mesh in detail along all of it. Then, Figure 6.2 shows in detail the mesh
used for the simulations at the DPF’s inlet. This mesh is the same for MINI and
quadratic elements, with the difference of the nodes located at the centroid or at
the midpoints, which are not presented in the figure.

Figure 6.2: Mesh at the inlet of the DPF in Case 1.

Figure 6.3 presents in detail the mesh at the DPF’s outlet. It is important to
say again that this mesh is the same for MINI and quadratic elements, with the
difference in the velocity nodes that not appears.

In two-dimensional CFD simulations, it is a common practice to use rectangular
elements in the boundary layer regions. Then, in this case, it would be interesting
to use these elements near the plugs and in the porous wall. However, the use
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Figure 6.3: Mesh at the outlet of the DPF in Case 1.

of rectangle elements along with the triangle elements would add complexity to
the code and, in this work, it was chosen to use only triangle elements to avoid
this problem knowing that they are also able to provide good results even though it
would probably need a more refined mesh in comparison with a mesh with rectangles
and triangles to get converged results.

After the mesh definition, it was possible to run the simulations and get some
results. Since the DPF is very long, the results will be presented in detail at the
device’s inlet and outlet. Moreover, since the results that were obtained for both
meshes are qualitatively similar, it is shown only one of them, the results obtained
with the MINI mesh. The results obtained with the quadratic mesh are presented
in the appendix. It was used Paraview, an open-source post-processing software, to
visualize the simulation results.

Figure 6.4 presents the results for the horizontal velocity, which is the velocity
in the x1 direction, at the inlet region. In this figure, it is possible to see that the
horizontal velocity at the inlet channel decreases along the channel while the velocity
at the outlet channel, which is zero next to the plug, increases. This situation occurs
because the air is going from the inlet to the outlet channel through the porous wall.

Figure 6.4: Horizontal velocity at DPF’s inlet in Case 1.

Figure 6.5 presents the results for the horizontal velocity at the DPF’s outlet. In
this figure, it is possible to see that the velocity had decreased a lot in comparison
with the velocity observed at the device’s inlet, presented in Figure 6.4, reaching
zero next to the plug. The explanation for that is the airflow through the porous
wall. Besides that, it is also possible to see that the velocity at the outlet channel
has increased due to the same reason.

Figure 6.6 presents the results for pressure at the DPF’s inlet. It is possible to
see that the pressure at the inlet channel is much higher than the pressure at the
outlet channel. This happens because it occurs a great pressure loss when the air
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Figure 6.5: Horizontal velocity at DPF’s outlet in Case 1.

goes through the porous wall.

Figure 6.6: Pressure at DPF’s inlet in Case 1.

Figure 6.7 presents the results for pressure at the DPF’s outlet. It is possible
to see the difference between the pressure at both channels that was mentioned
before. Besides that, it is also possible to note that the pressure at the inlet channel
has increased while it has decreased at the outlet channel in comparison with the
pressure at DPF’s inlet, presented in Figure 6.6.

Figure 6.7: Pressure at DPF’s outlet in Case 1.

In order to validate the results that were obtained, they were compared with
the results of the reference work for the axial velocity and wall velocity. The axial
velocity consists of the velocity in the horizontal direction at the channel center
while the wall velocity is the velocity in the transversal direction inside the porous
wall.

Figure 6.8 shows the results for the dimensionless axial velocity along the inlet
and outlet channels that were obtained in this work using meshes with MINI and
quadratic elements and the ones obtained in the reference work. It is important to
know that the dimensionless axial velocity is the axial velocity divided by the axial
velocity at the DPF’s entry while the dimensionless channel length is the length
divided by the device’s total length.

Then, it is possible to see that, despite a difference between the results, all of them
have a linear behavior. This fact may make it possible to think that the simulation
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is working fine but need a more refined mesh to be more accurate. The fact that
the meshes with MINI and quadratic elements had close results may indicate a
convergence of results, but it would be interesting to use more refined meshes in the
future to verify that.

Figure 6.8: Axial velocity along the inlet and outlet channels at Case 1.

Figure 6.9 shows the results that were obtained for the dimensionless wall velocity
along the channel in this work, using two different meshes, and in the reference work.
The dimensionless wall velocity is defined according to KONSTANDOPOULOS et
al [25] as presented by Eq. 6.1, where u′

w is the dimensionless wall velocity, L is the
DPF’s total length, Uin is the velocity at DPF’s entry, W is the channel width and
uw is the wall velocity, which consists of the vertical velocity inside the porous wall.

u′
w =

4L

UinW
|uw| (6.1)

Looking at Figure 6.9 it is possible, firstly, to see that the simulations carried
out in this work had results with a good agreement between the two meshes used,
which may indicate that the results are converging. Besides that, it is also possible
to see that the wall velocity obtained in this work has a similar profile to the one
obtained in the reference work, despite the higher values of this work velocity, which
may indicate that the applied method works fine but need more refined meshes.

The higher values that this work results have in comparison with the literature
ones can also be explained by the three-dimensional effects that were only taken
into account in the reference work, by the gravitational effects that were only taken
into account in this work, or just by numerical errors. Another possible explanation
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Figure 6.9: Wall Velocity along the channel at Case 1.

is the fact that the reference work does not use the same methodology than the one
used here.

6.1.3 Case 2: Air with particulates

After the simulation of a DPF case considering only the airflow, it was also
simulated the air along with the particulates. This case was based on the work
of SBRIZZAI et al [28] which has numerically simulated the problem using the
Navier-Stokes equations for the fluid flow and Darcy’s law for the porous medium.

The parameters adopted are presented in Table 6.3, where the inlet velocity, air
temperature, free mean path of the air, the particulates parameters, and the DPF
geometry information are all presented at the reference work, while the others fluid
properties at this temperature, which are presented in this table, were obtained at
the work of ÇENGEL AND GHAJAR [40]. Finally, the permeability and the inertial
resistance coefficient values were obtained by an adjustment procedure in the same
way that was done in the reference work.

The characteristic velocity of this problem is the inlet velocity while the charac-
teristic length is the channel width. Then, this problem has Re ≈ 88, which shows
that the flow is laminar, and Fr ≈ 26.

It is important to highlight that the diameter value of the particulate used in
this simulation is close to the diameter value of the biodiesel particulates presented
by SOUZA [26]. Then, to get results using the developed code that agrees with the
reference results means that this code is reliable to be used for cases where the DPF
is working with biodiesel particulates.
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Parameter Value
Inlet Velocity (m/s) 3
Air Density (kg/m3) 0.6158

Air Dynamic Viscosity (Pa.s) 2.934 x 10−5

Air Temperature (K) 600
Mean free path of gas molecules (nm) 104

Particulates Density (kg/m3) 1000
Particulates Diameter (nm) 200

Permeability (m2) 5 x 10−12

Inertial Resistance Coefficient (-) 223.1
Channel Width (mm) 1.4
Channel Length (mm) 253.4

Porous Wall Thickness (mm) 0.38

Table 6.3: Parameters used in the simulation of Case 2.

In this case, we were interested in the flow steady state. Then, since this case is
a one-way coupling problem, it was, firstly, calculated the steady state of the airflow
and, then, these results were used to calculate the particulates’ trajectory without
the need for further calculations for the continuous phase. This approach brings a
reduction in the computational effort.

In the same way that was done in Case 1, it was also used two meshes, one with
MINI elements and the other with quadratic elements, where both meshes have the
same number of elements and nodes for pressure. Then, both meshes have 297504
elements and 152540 pressure nodes, but the mesh with MINI elements has 450044
velocity nodes while the mesh with quadratic elements has 602583 velocity nodes.

Figure 6.10 presents the mesh at DPF’s inlet in detail. This mesh is the same for
both meshes used in this work, the difference between them is the extra nodes that
are located at the element centroid for MINI elements and at the element midpoints
for quadratic elements. These extra nodes are not presented in the figure.

Figure 6.10: Mesh at the inlet of the DPF in Case 2.

Figure 6.11 presents the mesh at DPF’s outlet in detail for both meshes used in
this work. Since the DPF is very long, to present all the mesh in the same figure
would not be interesting and, because of that, it presented the mesh at the device’s
inlet and outlet.

Simulations were carried out and results qualitatively similar were obtained for
both meshes. Then, presenting the results obtained with each mesh is unnecessary
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Figure 6.11: Mesh at the outlet of the DPF in Case 2.

and, because of that, it was only presented the results obtained with the MINI mesh.
The quadratic mesh results are presented in the appendix.

Figure 6.12 presents the results for the horizontal velocity at the DPF’s inlet. It
is possible to see that the horizontal velocity at the inlet channel decreases along the
channel while the velocity at the outlet channel increases due to the airflow going
from the inlet to the outlet channel.

Figure 6.12: Horizontal velocity at DPF’s inlet in Case 2.

Figure 6.13 presents the results for the horizontal velocity at the device’s outlet.
It can be seen how the velocity at the inlet channel has decreased until reaches zero
value in the plug while at the outlet channel the velocity has increased.

Figure 6.13: Horizontal velocity at DPF’s outlet in Case 2.

Figure 6.14 presents the results for pressure at the DPF’s inlet. It is possible to
see how the pressure at the inlet channel is higher than the pressure at the outlet
channel due to the pressure loss in the porous wall.

Figure 6.15 presents the results for pressure at the DPF’s outlet. In this case,
the pressure has decreased in both channels in comparison with the device’s inlet,
presented by Figure 6.14.

The results that were get in this work were compared with the reference results
to validate them. Then, since the gas and solid phases are decoupled, first, this
process was done only for the continuous phase.

Figure 6.16 presents the results for the normalized flow rate across the porous
along the DPF. The normalized flow rate consists of the local flow divided by the
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Figure 6.14: Pressure at DPF’s inlet in Case 2.

Figure 6.15: Pressure at DPF’s outlet in Case 2.

total flow. Then, it is possible to see, firstly, that the results that were get with
both meshes are similar, indicating that the results may be converged.

However, it is possible to see a significant difference between this work’s results
and the reference work’s results, which can be explained by the different method-
ologies used by these works, the three-dimensional effects that were only considered
in the reference work, the gravitational effects that were only taken into account in
this work or also just by numerical errors, since this values are small and can be
significantly affected by these errors. Another cause that could be investigated are
the used meshes.

After getting the results for the continuous phase, it is necessary to calculate the
dispersed phase behavior. The particulates’ behavior was calculated based on the
continuous phase behavior. In this case, it was randomly displaced 104 particles in
the domain’s inlet and, after that, calculated the particle position through time until
all particles had been trapped at the porous wall. It was adopted as the difference
between time steps the value of ∆t′ = 10−3.

Another important factor is the interaction between the particulates and the
porous wall. In this work, it was used the same criterion that was used in the
reference work, which assumes that, for this specific case, all particles that have a
velocity less than 2 m/s at the porous wall are captured. Then, in both works, all
particles were captured.

Figure 6.17 shows a view of the DPF’s inlet with the horizontal velocity field and
the particulates trapped by the porous wall, which are represented as white spheres.
It is possible to see how the number of trapped particulates increases far from the
entry.

Figure 6.18 shows a view of the DPF’s outlet with the horizontal velocity field
and the particulates trapped by the porous wall. In this figure, it can be seen
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Figure 6.16: Normalized flowrate through the porous wall along the channel at Case
2.

Figure 6.17: Horizontal velocity at DPF’s inlet and particulates trapped in the
porous wall at Case 2.
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that there are many more particles trapped in comparison with the device’s inlet,
presented in Figure 6.17.

Figure 6.18: Horizontal velocity at DPF’s outlet with particulates trapped in the
porous wall at Case 2.

Figure 6.19 shows a comparison between the concentration of the particulate
along the DPF that was obtained in this work and the reference work. The particu-
lates concentration is the number of particulates trapped in some part of the porous
wall divided by the total of particulates. In this work, a greater number of particu-
lates have been trapped next to the channel’s inlet. This difference can be explained
by the gravity effects taken into account only in this work for the dispersed phase
or by the difference presented in the continuous phase which possible explanations
were already presented.

Figure 6.19: Trapped particulates concentration along the channel at Case 2.
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6.2 Three Dimensional

6.2.1 Case Set-Up

In the same way that was done in the two-dimensional case, the symmetry con-
ditions are going to be applied to reduce the computational effort of the simulation.
However, in this case, there are symmetry conditions not only in the x2 direction
but also in the x3 direction. Then, it was modeled four quarters of channels, each
channel was split in half twice, once for each of these directions.

Figure 6.20 presents the three-dimensional model used in this work to simulate
the DPF. The plugs were represented by grey squares while the porous wall was
represented by green lines in the device’s inlet and outlet. The porous wall was not
presented in all of its extension, but it must be understood that the porous wall
goes from the DPF’s inlet to its outlet. The boundary surfaces of the model are
indicated in the figure as top, left, bottom, right, inlet, outlet, and plug.

Figure 6.20: Three-Dimensional DPF Model.

Table 6.4 presents the boundary conditions applied to the three-dimensional case.
It is presented in this table the type of boundary condition and its mathematical
definition applied at each of the boundary surfaces indicated in Figure 6.20.
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Type Boundaries u1 u2 u3 P

Inlet Inlet u1 = 1 u2 = 0 u3 = 0 ∇P · n = 0
Symmetry Top, bottom ∇u1 · n = 0 u2 = 0 ∇u3 · n = 0 ∇P · n = 0
Symmetry Right, left ∇u1 · n = 0 ∇u2 · n = 0 u3 = 0 ∇P · n = 0

Wall Plug u1 = 0 u2 = 0 u3 = 0 ∇P · n = 0
Outlet Outlet ∇u1 · n = 0 ∇u2 · n = 0 ∇u3 · n = 0 P = 0

Table 6.4: Boundary Conditions of the three-dimensional DPF model.

6.2.2 Case 3: Airflow and channels with 50% of its original

length

Firstly, it was intended to simulate a case similar to Case 1 using a three-
dimensional model. However, since the three-dimensional model requires much more
computational effort, we did not have enough computational resources available to
run a case with the same geometry that was used in Case 1. Then, this case was
simulated using the same parameters as Case 1, presented by Table 6.2, but con-
sidering only half of the channel length to reduce the computational effort. So, this
case has channels with a length equal to 152.4 mm.

In order to check the convergence of the results, it was run simulations with three
different meshes. All three meshes were formed by tetrahedron MINI elements and
were obtained using Gmsh. The number of elements, pressure nodes, and velocity
nodes of each mesh is presented in Table 6.5. Finally, it is important to say that
Mesh 3 used almost all the computational memory that we have available, making
the use of more refined meshes not possible.

Mesh Elements Pressure Nodes Velocity Nodes
Mesh 1 3078653 579548 3658201
Mesh 2 4042608 743974 4786582
Mesh 3 5373464 967712 6341176

Table 6.5: Details of the meshes used in Case 3.

Then, the simulations had been run until they reached a steady state of the flow.
Figure 6.21 presents the results obtained using the three presented meshes for the
horizontal velocity along a channel with a plug in its exit, an inlet channel, and a
channel with a plug in its entry, an outlet channel. Firstly, it is possible to see some
instabilities in the results, which may indicate that the meshes were not refined
enough to provide accurate results.

Moreover, it is also possible to see in the figure that the velocity at the inlet
channel has a great decrease at the end of the channel while the velocity in the
outlet channel has a great increase at the same region. This fact does not agree with
Case 1 and with KONSTANDOPOULOS et al [25] results where it was observed
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an almost linear behavior for the velocity in both channels. This difference may be
another proof that the results are not in convergence.

Figure 6.21: Horizontal velocity along the inlet and outlet channels results obtained
using three different meshes.

Figure 6.22 presents the results of the velocity in the x2 direction in the porous
wall between the top right and bottom right channels along the channels for different
positions. The positions were taken into account according to the distance from the
center of these channels in the x3 directions.

Firstly, it is possible to see that the velocity values are decreasing as it moves
away from the center. This may be explained by the flow in the x3 direction which
must become stronger far from the center. Another important observation is the
velocity fluctuations that may indicate numerical errors.

Figure 6.23 presents the results of the velocity in the x3 direction in the porous
wall between the top right and top left channels along them for different positions.
The positions were taken into account according to the distance from the center of
these channels in the x2 directions. In this figure, it is observed the same things
that were mentioned for Figure 6.22.

It was possible to visualize these results using the Paraview. In Paraview the
directions X, Y, and Z, refer, respectively, to the directions x1, x2, and x3. Then,
since the results do not seem to be converged, it is presented here the ones got with
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(a) x3 = 0.0 (b) x3 = 0.1

(c) x3 = 0.2 (d) x3 = 0.3

(e) x3 = 0.4 (f) x3 = 0.5

Figure 6.22: Velocity in x2 direction in the porous wall at different distances from
the channels centers.
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(a) x2 = 0.0 (b) x2 = 0.1

(c) x2 = 0.2 (d) x2 = 0.3

(e) x2 = 0.4 (f) x2 = 0.5

Figure 6.23: Velocity in x3 direction in the porous wall at different x2 values.
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Mesh 3, which is the most refined mesh. The other meshes’ results are presented in
the appendix.

Figure 6.24 presents the horizontal velocity field, which was presented in this
work as the variable u1, at the DPF’s inlet in the x1 − x2 plane, which is the DPF’s
right according to Figure 6.20. In this figure, it is possible to see that the air enters
the top channel and its velocity decreases along the channel while it increases in the
bottom channel.

Figure 6.24: Horizontal velocity field at the DPF’s inlet plotted in the x1−x2 plane.

Figure 6.25 presents the horizontal velocity field at the DPF’s outlet in the x1−x2

plane, which is the DPF’s right according to Figure 6.20. In this figure, it is possible
to see that the air in the top had decreased until reached zero in the plug while in
the bottom channel it increased.

Figure 6.25: Horizontal velocity field at the DPF’s outlet plotted in the x1 − x2

plane.

Figure 6.26 presents the horizontal velocity field at the DPF’s inlet in the x1−x3

plane, located in the DPF’s bottom according to Figure 6.20. It is possible to see
that the air enters the bottom left channel, according to Figure 6.20, which is the
bottom channel in this figure, and its velocity decreases while the velocity on the
other channel increases.

Figure 6.26: Horizontal velocity field at the DPF’s inlet plotted in the x1−x3 plane.

Figure 6.27 presents the horizontal velocity field at the DPF’s outlet in the x1−x3

plane, located in the DPF’s bottom according to Figure 6.20. It is possible to see
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that the air in this figure’s bottom channel had decreased until reached zero in the
plug while on the other channel it increased.

Figure 6.27: Horizontal velocity field at the DPF’s outlet plotted in the x1 − x3

plane.

Figure 6.28 presents the pressure field at the DPF’s inlet in the x1 − x2 plane,
which is the DPF’s right according to Figure 6.20. It is possible to see how the
pressure has higher values in the region before the device.

Figure 6.28: Pressure field at the DPF’s inlet plotted in the x1 − x2 plane.

Figure 6.29 presents the pressure field at the DPF’s outlet in the x1 − x2 plane,
which is the DPF’s right according to Figure 6.20. It is possible to see how the
pressure has lower values after the device, showing that there is a great pressure
drop along the DPF caused by the airflow through the porous wall.

Figure 6.29: Pressure field at the DPF’s outlet plotted in the x1 − x2 plane.

Figure 6.30 presents the pressure field at the DPF’s inlet in the x1 − x3 plane in
the DPF’s bottom according to Figure 6.20. In this figure, it is possible to see again
the high pressure values before the DPF.

Figure 6.31 presents the pressure field at the DPF’s outlet in the x1 − x3 plane
in the DPF’s bottom according to Figure 6.20. Once again, it is possible to see that
there is a great pressure drop in the device.
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Figure 6.30: Pressure field at the DPF’s inlet plotted in the x1 − x3 plane.

Figure 6.31: Pressure field at the DPF’s outlet plotted in the x1 − x3 plane.

6.2.3 Case 4: Airflow and channels with 20% of its original

length

After the Case 3 results analysis, it seems that the convergence of results was
not achieved. Then, it was run a case with the same parameters, presented by Table
6.2, but now with 20% of the original channel length, which is equal to 60.96 mm.

Once again, to check the convergence of the results, it was run simulations with
three different meshes. All three meshes were formed by tetrahedron MINI elements
and were obtained using Gmsh. The number of elements, pressure nodes, and veloc-
ity nodes of each mesh is presented in Table 6.6. Finally, it is important to say that
Mesh 3 used almost all the computational memory that we have available, making
the use of more refined meshes not possible.

Mesh Elements Pressure Nodes Velocity Nodes
Mesh 1 1331883 252679 1584562
Mesh 2 2347943 425833 2773776
Mesh 3 4098324 722834 4821158

Table 6.6: Details of the meshes used in Case 4.

Then, the simulations had been run until they reached a steady state of the flow.
Figure 6.32 presents the results obtained using the three presented meshes for the
horizontal velocity along a channel with a plug in its exit, an inlet channel, and a
channel with a plug in its entry, an outlet channel. Firstly, it is possible to see some
instabilities in the results, which may indicate that the meshes were not refined
enough to provide accurate results.

Analyzing the results for the inlet channel, it is possible to see that they have
similar shapes, but Mesh 2 has lower values in comparison to Mesh 1 and Mesh 3
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has lower values in comparison to the other meshes. All the meshes provided results
with the velocity staying almost constant along the channel and suddenly decreasing
until reached zero at the end of the channel. However, it also can be seen that the
velocity decrease seems to become smoother with more refined meshes. Then, this
fact may indicate that we have not reached a convergence of results and that more
refined meshes would provide results that are more likely to that obtained in Case
1 and in the literature.

Now looking at the results for the outlet channel, it is possible to see that the
velocity increases almost linearly until near the channel’s end when the flow has
suddenly a great increase. Then, as it was observed in the inlet channel, this increase
becomes smoother in the most refined mesh. Despite that, it was also observed that
Mesh 1 provided higher values and Mesh 3 had lower values.

Another important observation is that the results obtained for mesh 2 and mesh
3 in this case, presented by Figure 6.32, seem to be more distant from each other
than the ones obtained in Case 3, presented by Figure 6.21. This observation can
imply that the reduction of the channel length did not make the case simpler but
had the opposite effect.

Figure 6.32: Horizontal velocity along the inlet and outlet channels results obtained
using three different meshes.

Figure 6.33 presents the results of the velocity in the x2 direction in the porous

64



wall between the top right and bottom right channels along the channels for different
positions. The positions were taken into account according to the distance from the
center of these channels in the x3 directions.

Firstly, it is possible to see that the results for different distances from the center
seem to be similar, except for the results got at a distance of x3 = 0.5 from the
center, Figure 6.33f. This may be explained by the fact that at this distance from
the center, the flow in the x3 direction must be higher, affecting the flow in the x2

direction.
Moreover, it is also possible to see that the results present some instabilities,

which may be caused by numerical errors indicating that it has not achieved a
convergence of results. This lack of convergence can also be observed in the difference
in the results got with each mesh.

Figure 6.34 presents the results of the velocity in the x3 direction in the porous
wall between the top right and top left channels along them for different positions.
The positions were taken into account according to the distance from the center of
these channels in the x2 directions.

In this case, the results that are not similar to the rest of them are the ones got
at distances from the centers of x2 = 0.4 and x2 = 0.5. Besides that, once more it
is possible to see instabilities in all the results, which indicates once more that the
results did not converge.

Therefore, it looks like the results have not achieved a convergence when consid-
ering 20% of the original channel length and using almost all computational resources
that we have available.

It was possible to visualize these results using the Paraview. In Paraview the
directions X, Y, and Z, refer, respectively, to the directions x1, x2, and x3. Since
the results did not seem to be converged, it is presented the results got with Mesh
3, which is the most refined mesh. The other meshes’ results are presented in the
appendix.

Figure 6.35 presents the horizontal velocity field, which was presented in this
work as the variable u1, along the channels in the x1−x2 plane, which is the DPF’s
right according to Figure 6.20. In this figure, it is possible to see that the air enters
the top channel and its velocity seems to only reduce near the plug, at the end
of the channel. On the other hand, the velocity in the bottom channel seems to
stay constant along the channel and it only increases at the end of the channel.
This velocity behavior is different from what was observed in the two-dimensional
case, Case 1, and in the literature, where the velocities were increasing or decreasing
almost linearly along the channel.

Figure 6.36 presents the horizontal velocity field, which is the u1 variable, along
the channels in the x1 − x3 plane, which is the DPF’s bottom according to Figure
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(a) x3 = 0.0 (b) x3 = 0.1

(c) x3 = 0.2 (d) x3 = 0.3

(e) x3 = 0.4 (f) x3 = 0.5

Figure 6.33: Velocity in x2 direction in the porous wall at different distances from
the channels centers.
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(a) x2 = 0.0 (b) x2 = 0.1

(c) x2 = 0.2 (d) x2 = 0.3

(e) x2 = 0.4 (f) x2 = 0.5

Figure 6.34: Velocity in x3 direction in the porous wall at different x2 values.

Figure 6.35: Horizontal velocity field plotted in the x1 − x2 plane.
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6.20. It is possible to see that the air enters the bottom left channel, according to
Figure 6.20, which is the bottom channel in this figure, and its velocity seems to
stay constant until the end of the channel where it suddenly has a great decrease,
while the velocity on the other channel stays constant until it suddenly has a great
increase in the same region. Once more, this fact is not observed in Case 1 and in
the literature, but only here when the DPF is modeled as three-dimensional.

Figure 6.36: Horizontal velocity field plotted in the x1 − x3 plane.

Figure 6.37 presents the pressure field along the channels in the x1 − x2 plane,
which is the DPF’s right according to Figure 6.20. It is possible to see how the
pressure has higher values in the region before the device and lower values after the
device, showing that there is a great pressure drop along the DPF.

Figure 6.37: Pressure field plotted in the x1 − x2 plane.

Figure 6.38 presents the pressure field along the channels in the x1 − x3 plane
in the DPF’s bottom according to Figure 6.20. In this figure, it is possible to see
again the great pressure drop that occurs when the air is going through the DPF.

Figure 6.38: Pressure field plotted in the x1 − x3 plane.
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Chapter 7

Conclusions

The main goal of this work was to develop a methodology to simulate the multi-
phase flow, constituted by air and particulates formed by the biodiesel combustion,
inside a DPF. In order to achieve that, firstly, a methodology was proposed. Then,
a computational code based on this methodology was developed from scratch and
its implementation was verified. Finally, this code was used to simulate some DPF
cases that were found in the literature.

The first case that was simulated modeled the problem as two-dimensional and
just considered the airflow inside the device. In this case, we had some differences
between this work and the literature results, which could be caused mainly by the
different methodologies used by each work or by meshes that are not good enough.
However, this work’s results are coherent with the literature ones and it is expected
that with some improvement on these factors, more accurate results are going to be
achieved.

A two-dimensional multiphase flow case, constituted by air and particulates, was
simulated. The particulates present in this case have size and density values next
to the biodiesel particulates ones. In the same was as the previous case, this work’s
results had some differences in relation to the literature ones that can be explained
by the same reasons presented for the last case. Then, despite that, it is expected
that, with some improvements, the presented methodology can be used to simulate
the airflow inside a DPF along with the biodiesel particulates, which was the main
goal of this work.

Since a three-dimensional model is more compatible with reality, the first case
was simulated again but now modeling the problem as three-dimensional. A three-
dimensional model is much more complex than the two-dimensional one and de-
mands much more computational resources. Because of that, the case was simulated
considering only half of the first case channel length. The results that were obtained
in this case were very different from the ones obtained in the 2D case and the reason
for that seemed to be the mesh that was not refined enough.
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In this scenario, since it used almost all computational resources available, a new
case was simulated considering only 20% of the original channel length. Once more
the results were very different than expected and the explanation could be not only
the mesh again but also the fact that shorter channels make the simulation more
complex.

After analyzing these results, it is possible to say, firstly, that the presented
methodology seems to work well for two-dimensional cases. Then, it is expected
that, after some improvements, it can be used to study in detail the flow inside the
DPF, despite its limitation to represent the three-dimensional effects.

Moreover, despite that we have not achieved good results for DPF flow in the
three-dimensional cases, it is expected that more refined meshes provide good re-
sults since this methodology provided good results for other three-dimensional cases.
Then, more computational resources would be needed to do that.

It is suggested for future works to run the three-dimensional case using more
refined meshes and to compare the results with the literature and with the two-
dimensional results. Besides that, since the computational resources needed may be
difficult to find, it is also suggested to study how to reduce the error in the interface
between the fluid and porous regions. The error in the results found in this region
was observed in Chapter 5 at the Flow over Porous Region problem and to mitigate
this problem it may not be necessary to use very refined meshes.

Another suggestion is to use other methodologies to simulate flow with porous
mediums and compare them with this one, verifying which one was able to provide
the best results using less computational effort. The inclusion of turbulent models
in the presented methodology is also strongly recommended for the future.

Finally, it is essential to say that this work has not only presented a methodology
that can be used to study in detail the flow inside a DPF in vehicles using biodiesel
but also has presented a great basis for further developments in this and similar
areas.
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Appendix A

Other Figures

This appendix presents the figures that were not important to be part of the
main text, but it is important to be part of this work in the case of some readers
interested in checking them.

Figure A.1 presents the results for the horizontal velocity at the inlet region
obtained with the quadratic mesh. This result was considered qualitatively similar
to Figure 6.4.

Figure A.1: Horizontal velocity at DPF’s inlet in Case 1 obtained with the quadratic
mesh.

Figure A.2 presents the results for the horizontal velocity at the outlet region
obtained with the quadratic mesh. This result was considered qualitatively similar
to Figure 6.5.

Figure A.2: Horizontal velocity at DPF’s outlet in Case 1 obtained with the
quadratic mesh.

Figure A.3 presents the results for pressure at the DPF’s inlet. This result was
considered qualitatively similar to Figure 6.6.

Figure A.4 presents the results for pressure at the DPF’s outlet. This result was
considered qualitatively similar to Figure 6.7.
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Figure A.3: Pressure at DPF’s inlet in Case 1 with the quadratic mesh.

Figure A.4: Pressure at DPF’s outlet in Case 1 with the quadratic mesh.

Figure A.5 presents the results for the horizontal velocity at the DPF’s inlet
using the quadratic mesh. This result was considered qualitatively similar to Figure
6.12.

Figure A.5: Horizontal velocity at DPF’s inlet in Case 2 using quadratic mesh.

Figure A.6 presents the results for the horizontal velocity at the DPF’s outlet
using the quadratic mesh. This result was considered qualitatively similar to Figure
6.13.

Figure A.7 presents the results for the pressure at the DPF’s inlet using the
quadratic mesh. This result was considered qualitatively similar to Figure 6.14.

Figure A.8 presents the results for the pressure at the DPF’s outlet using the
quadratic mesh. This result was considered qualitatively similar to Figure 6.15.

Figure A.9 presents the horizontal velocity field at the DPF’s inlet in the x1−x2

plane using Mesh 1 for Case 3.
Figure A.10 presents the horizontal velocity field at the DPF’s outlet in the

x1 − x2 plane using Mesh 1 for Case 3.
Figure A.11 presents the pressure field at the DPF’s inlet in the x1 − x2 plane

using Mesh 1 for Case 3.
Figure A.12 presents the pressure field at the DPF’s outlet in the x1 − x2 plane

using Mesh 1 for Case 3.
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Figure A.6: Horizontal velocity at DPF’s outlet in Case 2 using quadratic mesh.

Figure A.7: Pressure at DPF’s inlet in Case 2 using quadratic mesh.

Figure A.8: Pressure at DPF’s outlet in Case 2 using quadratic mesh.

Figure A.9: Horizontal Velocity at DPF’s inlet in Case 3 obtained with Mesh 1.

Figure A.10: Horizontal Velocity at DPF’s outlet in Case 3 obtained with Mesh 1.

Figure A.11: Pressure at DPF’s inlet in Case 3 obtained with Mesh 1.
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Figure A.12: Pressure at DPF’s outlet in Case 3 obtained with Mesh 1.

Figure A.13 presents the horizontal velocity field at the DPF’s inlet in the x1−x2

plane using Mesh 2 for Case 3.

Figure A.13: Horizontal Velocity at DPF’s inlet in Case 3 obtained with Mesh 2.

Figure A.14 presents the horizontal velocity field at the DPF’s outlet in the
x1 − x2 plane using Mesh 2 for Case 3.

Figure A.14: Horizontal Velocity at DPF’s outlet in Case 3 obtained with Mesh 2.

Figure A.15 presents the pressure field at the DPF’s inlet in the x1 − x2 plane
using Mesh 2 for Case 3.

Figure A.16 presents the pressure field at the DPF’s outlet in the x1 − x2 plane
using Mesh 2 for Case 3.

Figure A.17 presents the horizontal velocity field at the DPF in the x1−x2 plane
using Mesh 1 for Case 4.

Figure A.18 presents the pressure field at the DPF in the x1 − x2 plane using
Mesh 1 for Case 4.

Figure A.19 presents the horizontal velocity field at the DPF in the x1−x2 plane
using Mesh 2 for Case 4.

Figure A.20 presents the pressure field at the DPF in the x1 − x2 plane using
Mesh 2 for Case 4.
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Figure A.15: Pressure at DPF’s inlet in Case 3 obtained with Mesh 2.

Figure A.16: Pressure at DPF’s outlet in Case 3 obtained with Mesh 2.

Figure A.17: Horizontal Velocity at DPF in Case 4 obtained with Mesh 1.

Figure A.18: Pressure at DPF in Case 4 obtained with Mesh 1.

Figure A.19: Horizontal Velocity at DPF in Case 4 obtained with Mesh 2.

Figure A.20: Pressure at DPF in Case 4 obtained with Mesh 2.
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