
FINITE ELEMENT SIMULATION OF THREE-DIMENSIONAL TWO-PHASE
FLOWS IN COMPLEX GEOMETRIES

Daniel Barbedo Vasconcelos Santos

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia Mecânica,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Doutor em Engenharia
Mecânica.

Orientador: Gustavo Rabello dos Anjos

Rio de Janeiro
Fevereiro de 2024



FINITE ELEMENT SIMULATION OF THREE-DIMENSIONAL TWO-PHASE
FLOWS IN COMPLEX GEOMETRIES

Daniel Barbedo Vasconcelos Santos

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA MECÂNICA.

Orientador: Gustavo Rabello dos Anjos

Aprovada por: Prof. Gustavo Rabello dos Anjos
Prof. Alvaro Luiz Gayoso de Azeredo Coutinho
Prof. Enio Pedone Bandarra Filho
Prof. Gustavo César Rachid Bodstein
Prof. Norberto Mangiavacchi
Prof. Su Jian

RIO DE JANEIRO, RJ – BRASIL
FEVEREIRO DE 2024



Barbedo Vasconcelos Santos, Daniel
Finite Element Simulation of Three-Dimensional Two-

Phase Flows in Complex Geometries/Daniel Barbedo
Vasconcelos Santos. – Rio de Janeiro: UFRJ/COPPE,
2024.

XVII, 112 p.: il.; 29, 7cm.
Orientador: Gustavo Rabello dos Anjos
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Mecânica, 2024.
Referências Bibliográficas: p. 101 – 110.
1. Finite Element Method. 2. Front-Tracking. 3.

Laplace-Beltrami. 4. Semi-Lagrangian. I. Rabello
dos Anjos, Gustavo. II. Universidade Federal do Rio de
Janeiro, COPPE, Programa de Engenharia Mecânica. III.
Título.

iii



Acknowledgements

Firstly, I want to thank my advisor, Professor Gustavo Rabello. This thesis
wouldn’t have been possible without his knowledge, guidance, patience, and friend-
ship. I appreciate him accepting me as a student, and I couldn’t have asked for a
better advisor.

I also want to express gratitude to my friends and family. Thanks to Rayssa for
listening to my complaints about the semi-Lagrangian issues, and to Raquel, Carlos,
Jean, Larissa, Gabriel, and Natalia for their friendship and support. Special thanks
to Roberta for welcoming me to the laboratory and making me feel at home.

I extend my thanks to CAPES for their funding that supported my studies.
Additionally, I would like to express my gratitude to LabMFA for providing access
to the necessary computing resources. All simulations presented in this work were
executed on the computers made available by LabMFA.

iv



Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)
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February/2024
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In this work, three-dimensional two-phase flows in complex geometries are in-
vestigated through finite element numerical simulations. The governing equations,
are written in three-dimensional Cartesian coordinates and solved through the finite
element method on unstructured meshes, using the Taylor-Hood "Mini" element,
chosen due to its numerical stability and convergence. The convective term of the
momentum equation is discretized by a first-order semi-Lagrangian method. The
fluid phases are separated by an interface mesh constructed by triangular surface
elements, uncoupled from the main three-dimensional fluid mesh. Surface tension
force is calculated through the Laplace-Beltrami operator and added to the simu-
lation as a source term through the continuum surface force model (CSF). At the
start of each time step, the positions of the interface mesh nodes are updated based
on the fluid velocity fields. The proposed methodology is verified against analytical
and experimental data through single and two-phase benchmark tests found in the
literature, such as the static droplet, oscillating droplet, rising bubble in quiescent
fluid and Taylor bubbles, and the numerical code is used to simulate several two-
phase flows in complex geometries, such as Taylor bubbles in different cross-sections
and converging, expanding and curved channels.
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para a obtenção do grau de Doutor em Ciências (D.Sc.)

Daniel Barbedo Vasconcelos Santos

Fevereiro/2024

Orientador: Gustavo Rabello dos Anjos
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Neste trabalho, escoamentos bifásicos tridimensionais em geometrias complexas
são investigados através de simulação numérica utilizando o método dos elementos
finitos. As equações governantes, são escritas em coordenads Cartesianas tridi-
mensionais e solucionadas numericamente através do método dos elementos finitos
em malhas não estruturadas, usando o elemento da família Taylor-Hood, elemento
"Mini". O termo convectivo da equação da quantidade de movimento é discretizado
por um esquema semi-Lagrangiano de primeira ordem. As fases fluidas são sepa-
radas por uma malha interfacial construida por elementos triangulares de superfície,
separada da malha tridimensional principal do fluido. A força de tensão superficial
é calculada do operador Laplace-Beltrami, e adicionada à simulação como um termo
fonte através método continuum surface force (CSF). No início de cada iteração a
posição dos nós da malha da interface é atualizada pelos campos de velocidade do
fluido. A metodologia proposta é verificada por testes com uma ou duas fases encon-
trados na literatura, tais como a gota estática, gota oscilante, bolha ascendendo em
fluido em repouso e bolhas Taylor, e o código numérico é usado para simular vários
escoamentos bifásicos em geometrias complexas, como bolhas Taylor em diferentes
seções transversais, e canais convergente, em expansão e curvo.
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Chapter 1

Introduction

The presence of two-phase flow can be seen across a broad spectrum of industrial
applications, including cooling of high-tech components such as microprocessors and
data centers [1], oil and gas production and refinement [2], [3], solar and nuclear
energy generation, [4], [5], medical X-ray equipment, power electronics in hybrid
vehicles, and beyond [6]. The complexity of two-phase flow stems from its rich
physics, encompassing heat transfer, evaporation, condensation, capillary effects,
and bubble dynamics, all within a single system. Consequently, it is a complex
phenomenon to model, whether experimentally or numerically.

One particular interest of the present research regarding the applications of two-
phase flow is the cooling of electronic components, an interest shared by the project
ACoolTPS - Advanced Cooling of high power microsystems using Two-Phase Flows
Systems in complex geometries, within the Royal Society Newton Advanced Fellow-
ship. Microprocessor chips are becoming faster and smaller, and are present in an
ever-growing amount of devices, such as handhelds, consumer appliances, cars, data
centers, and even in satellites and space stations. The advancements in speed and
miniaturization of electronic devices have led to a significant increase in heat gener-
ation. Operating microprocessors outside of their prescribed temperature range can
result in costly failures, affecting not just governments and organizations, but also
individuals. The present conventional cooling approaches are becoming ineffective
in removing the heat from current electronic devices as well as future ones being
designed, creating a demand for better thermal management solutions.

To meet this demand, several approaches have been studied. There is research
on the optimization of fin configuration and heat sink geometry [7], [8]; the use of
nanofluids as coolants [9], [10], [11]; and design, improvement, and application of
thermoelectric devices to cooling solutions [12], [13]. One promising alternative to
current heat dissipation methods is the use of phase-change-based cooling devices.
These devices are lightweight, energy efficient, and small in size, allowing them to
be put directly in contact or in very close proximity to the microprocessors. They
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Figure 1.1: Microchannel based evaporator schematics. Fluid is pooled at the end
of the inlet and outlet tubes (highlighted in green) and is conducted along the
microchannels in the middle (highlighted in blue), in parallel, from right to left.
The microprocessor can be positioned beneath the microchannel zone.

use a phase-change refrigerant-type coolant which changes into vapor phase when
exposed to heat. The latent heat of vaporization is orders of magnitude greater than
the specific-heat capacities of coolants in non-phase-change methods, improving the
solution efficacy. The schematics for the evaporator of such device can be observed
in fig. 1.1

However, designing phase-change devices presents a significant challenge. Two-
phase flow inside the microchannels can have several different flow regimes, including
bubbly flows, stratified flows, slug flows, plug flows, and misty flows. Understanding
the two-phase flow mechanics is essential to achieving effective designs and one way
to accomplish this is through numerical simulation.

Numerical simulation is a powerful tool to describe two-phase phenomena. It
offers speed and economical advantage over experimental setups and it can depict
scenarios that can be hard to observe as well as gather data in an experimental
setup, such as two-phase flow in microchannels, whose characteristic length can be
around microns in size.

Modelling such complex phenomena numerically is not an easy task, however.
The Navier-Stokes equations display non-linearity in the material derivative term
which leads to spurious currents in the results depending on simulation parameters
when discretizing the equations through the classical Galerkin method. The rep-
resentation and tracking of the moving interface between fluids also offers a hard
challenge, where many approaches have been used over the years, each presenting ad-
vantages and downsides, without a clear best approach to the issue. The simulation
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might also have to deal with a sharp transition of specific mass and viscosity across
the fluid interface, possibly introducing numerical instability due to the nature of
the numerical operations.

This thesis proposes an enhanced methodology for three-dimensional two-phase
flow simulations, extending the uncoupled formulation described in [14]. An Eule-
rian description and the Finite Element method are used to describe the flow field
based on the "one-fluid" approach, while having a separate Lagrangian description
for the fluid interface. The Navier-Stokes equations were discretized over a three-
dimensional domain, using an unstructured finite element mesh of Mini tetrahedron
elements. The convective non-linear terms of the Navier-Stokes equations are repre-
sented by a linear semi-Lagrangian method, which has no time step limitation and
is unconditionally stable, as shown in [15]. There are many methods to delimit the
fluid interface, and for this work, an unstructured three-dimensional surface mesh
serves as a boundary between the two phases. This interface mesh is not coupled to
the fluid mesh, but its position is updated at each time step using the velocity field
data obtained from the finite element solution of the fluid flow. The surface tension,
one of the main forces acting upon the fluid in a two-phase flow, is calculated us-
ing the interface mesh mean curvature. This mean curvature is obtained through a
finite element discretization of the Laplace-Beltrami operator applied to the inter-
face’s surface mesh. Due to the nature of the chosen method to represent the fluid
interface, some finite elements of the fluid mesh may be intersected by the interface
mesh. In these elements, the fluid properties, namely specific mass and viscosity,
are averaged over the element using their nodal values. This element intersection
by the interface can generate numerical instability; therefore an artificial thickness
is assigned to the fluid interface using a Heaviside function to attenuate the issue.
Following the proposed methodology, several two-phase flows are simulated, and
several complex geometry two-phase flow test cases are presented, with their results
compared to existing data.

The methodology is laid over the listed chapters, followed by test cases offering
validation for three-dimensional one-phase flow numerical simulation, as well as
the mean curvature obtained by the Laplace-Beltrami operator. Two-Phase flow
examples with known results are exhibited afterward, to demonstrate the accuracy
of the proposed two-phase methodology, and lastly, several test cases composed of
two-phase flows over complex geometry are presented and the results discussed.
These test cases intend to simulate microchannels of diverse cross sections, including
square, triangular, converging, and diverging. The content of this work is organized
as follows:

• Chapter 1: Introduction

3



• Chapter 2: Literature Review

• Chapter 3: Methodology

• Chapter 4: Numerical Results

• Chapter 5: Conclusion

• Appendix A: Publications
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Chapter 2

Literature Review

A couple of decades after its development as a tool to solve problems in solid
mechanics, the Finite Element Method started being applied to the solution of fluid
flow problems. It offered an interesting alternative to the finite difference method
due to the ease which the boundary conditions can be set, irregular geometries with
convex shapes modeled, and unstructured meshes used. It was soon applied to the
solution of field problems, [16], solution to unsteady irrotational flows and led to
the development of isoparametric elements [17], which can better represent curved
surfaces and arbitrarily shaped boundary conditions.

The simulation of two-phase flows involves solving a challenging problem, specif-
ically the identification of the two fluid phases and the boundary that separates
them, their interface. Strictly speaking, this interface consists of a very small, thin
region where molecules from both fluids can be found, with a thickness equivalent
to just a few mean free molecular paths. However, in engineering applications, the
scale of this interface is often significantly smaller compared to the scale of the over-
all problem. This effectively results in a near-zero thickness, representing a sharp
boundary between the fluids with a steep gradient in fluid properties.

In general, when using a fixed grid, the identification of fluid phases can be
achieved through a marker function. As fluids flow and change position, this marker
function requires periodic updates. Various methods are available for this purpose,
many of which are based on two different approaches: interface capturing and in-
terface tracking methods.

2.1 Interface Capturing

The first approach, interface capturing, tracks the phases positions implicitly
based on a scalar field associated with the background mesh. The interface is not
explicitly presented and must be constructed using information obtained from the
scalar field. This Eulerian approach is called interface capturing, and an example of
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it is presented in fig. 2.1c. The scalar field which delimits and identifies the fluids is
also advected by velocity interpolated from the fixed fluid mesh. Bubble coalescence
and break-up are modeled more easily using this approach, and complex geomet-
rical changes are handled automatically. As disadvantages, the interface capturing
methods require a more refined fixed mesh compared to interface tracking methods,
if the same level of accuracy is desired. Some methods also have a less accurate rep-
resentation of the interface and therefore poorer mean curvature calculation, which
can lead to less precise surface tension representation.

A popular interface capturing method is the Volume of Fluid (VOF) [18]. In
the VOF method applied to finite elements, each node is subjected to a function F,
which assigns either a value of one if the node contains one of the phases, or zero
if it contains the other. These values are averaged for each finite element, therefore
the boundary between fluids, the interface, lies over elements that present a number
between one and zero. The function F is then advected by the fluid velocity and
the function values at the nodes are updated. The VOF function is discontinuous,
and accuracy limitations when computing the curvature and interface normal, arise
because of that. Extra steps are needed to recover the interface explicitly, and the
results are not unique, depending on the technique developed for the task. Many
works were developed based on the VOF, such as [19], where the researchers devel-
oped a hybrid Volume of Fluid-Immersed Boundary Method (VOF-IBM) method to
describe numerically the freezing of liquid drops and liquid films. The equations for
heat exchange and phase change were coupled, and the surface tension effects at the
liquid-gas interface were taken into account, as well as the volume expansion due to
the specific mass difference between water and ice. They found that the final frozen
drop shape matches the experimental data, including the tip angle of the frozen drop
and the front-to-interface angle. [20] used the VOF method coupled with the LES
turbulence model to simulate a dam break flow in three dimensions. The authors
intended to use the model to be able to identify flooding zones and flooding time,
critical parameters for evacuation of people from dangerous areas. The accuracy
of their proposed model was estimated by comparing the obtained results to other
numerical analyses and experimental data. Their model was considered applicable
to study the initial stages of a dam break, the formation of underwater vortexes,
waves on the water surface, and backward waves. [21] developed a three-dimensional
multi-scale Discrete Element Method (DEM) coupled with a VOF solution to solve
three-phase flow configurations in a computationally efficient way. The method is
useful in situations where large geometric scale quantities are of interest, but small-
scale phenomena cannot be discarded. A dual mesh is used, and information from
the small scale is fed into the bulk scale to reach the solution. The method pro-
duced results agreeable with the literature and was able to reproduce experiments
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with more accuracy than traditional DEM-VOF methods. In [22] new methodologies
are proposed to address the problems that affect the VOF model, namely the diffi-
culties in the reconstruction of the interface which lead to erroneous mean curvature
calculations and the smearing of the interface due to inaccurate artificial diffusion
that appears on the front. The author also tried to address a problem that afflicts
several two-phase flow simulation techniques, the spurious velocities which appear
on the material discontinuity at the fluid interface. Several classical two-dimensional
benchmarks were presented, tank draining, rising bubble, Rayleigh-Taylor instabil-
ity, and dam-break flows, and two were proposed involving the merging of two rising
bubbles of different diameters and properties.

The Level Set method is another popular interface capturing method, which was
introduced in [23]. It consists in embedding a function representing the interface,
Γ(t) in a function Φ(x, t). Γ(t) is a surface on a three-dimensional simulation or
a curve on a two-dimensional simulation. Φ(x, t) is defined in such a way that
for each point in the domain of Γ(t), Φ(x, t) = vls. The value vls is the level set
value, which is arbitrary, but it is usually set to zero. If it is chosen as zero, the
fluid phases can be identified by just the sign of Φ(x, t). A convenient option for
the function Φ(x, t) is a distance function, where vls = 0. As the fluids flow, the
interface is advected by the fluids’ velocity fields. The Level Set method allows
for ease of calculation of the interface’s curvature and normal vector. The method
offers a fully implicit interface, which may be reconstructed globally and is unique. A
drawback of the method is that mass conservation is not guaranteed as the simulation
advances in time. Examples of methods based on the Level Set are [24] which
presents a two-dimensional three-phase flow numerical model with phase change.
The goal is to simulate flows with two immiscible fluids and a third phase composed
of one of the fluid’s vapor. Two-level set functions are used to capture the two
interfaces involved in the problem. The numerical solution is executed on a fixed
mesh using the finite volume method. The model was found applicable for problems
involving condensation or vaporization and solidification or melting, accounting for
conjugate heat transfer in the latter. [25] proposes an association of the level set
method with an interface conforming method that follows the interface with an
adaptive unstructured mesh for solving two-phase or free surface flows. The domain
evolution is dealt with implicitly, while a sharp representation of the interface by
an explicit manifold is achieved. The author executed free surface and two-phase
benchmarks in two and three dimensions. [26] uses a Level Set method with global
mass correction for simulating free surfaces and interfaces. The incompressible two-
dimensional Navier-Stokes equations are discretized by the finite volume method
on a staggered grid with a two-step projection method, and the mass correction is
applied to one fluid, automatically correcting the other. The results obtained are in
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agreement with theoretical predictions, experimental data, and previous numerical
simulations. The mass errors encountered after the mass correction were close to
machine zero.

Other methods based on the interface-capturing approach were developed over
time, such as the CLSVOF (Coupled Level Set Volume of Fluid), which was created
in efforts to reduce the drawbacks of both the Level Set and Volume of Fluid methods
[27], the Flexible Coupled Level Set and Volume of Fluid presented by [28], the
VOSET method by [29] and others [30], [31].

2.2 Interface Tracking

The second approach, interface tracking, follows the interface position explicitly,
either by marking a subset of interconnected nodes belonging to the fluid mesh
or by introducing a secondary mesh not coupled to the fluid mesh. These mesh
nodes are advected by interpolation of the velocity values obtained from the Navier-
Stokes solution calculated on the fixed mesh, also referred to as the background
mesh. This Lagrangian approach is called interface tracking, and it offers a sharp
interface representation and accurate property jumps, especially in methods where
the secondary mesh is coupled to the background fluid mesh. Examples of this
approach can be seen in figs. 2.1b and 2.1a, where one can observe an uncoupled
and coupled fluid interface, respectively. This avoids numerical diffusion completely
at the interface and reduces the mesh refinement needed at the front. One major
drawback of this approach is that the mesh nodes representing the interface tend
to cluster or scatter in certain areas, causing distortion and possibly tangling. To
overcome this issue, a remeshing process is required. Another issue is that these
methods cannot deal with coalescence or break-up naturally, so an explicit model is
necessary to simulate those situations.

In the Front Tracking method, used in this work, the interface between fluids is
created explicitly from the fluid or background mesh. This interface is one dimension
lower than the fluid interface and is completely separated from the fluid mesh. The
interface is advected by velocity obtained from the interpolation of fluid mesh nodal
values, moving through the fluid mesh as time advances. The explicit treatment of
the interface keeps the interface sharp, the fluid properties well defined and allows
the inclusion of surface tension forces at the interface. Between the drawbacks of
the method, one can cite the added implementation complexity due to the two-way
interaction of the interface with the fluid, the necessity of restructuring the interface
mesh as it deforms beyond usability due to uneven fluid velocity, and the necessary
explicit treatment of interface to interface contact. One popular front-tracking work
was developed in [32], using the Finite Difference method, on a stationary grid. The
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author chose to give the interface a finite thickness of the same order as the fluid mesh
element size to improve stability and smoothness, this thickness is constant over time
and therefore does not cause numerical diffusion. The fluid properties, specific mass,
and viscosity are updated according to an indicator function, which produces the
value of 0 outside the bubble, and 1 inside, and is constructed by the known interface
position. [33] developed a new numerical algorithm for the front-tracking method
based on an adaptive anisotropic unstructured mesh. In the author’s work, both
the fluid mesh and the interface mesh are unstructured anisotropic meshes, with the
goal of improving modeling capabilities of complex geometries. Special attention
was given to physical variable interpolation between the meshes. This algorithm
was implemented on the commercial CFD package ANSYS Fluent through user-
defined functions. The author presented three test cases as validation, a gas bubble
rising in quiescent liquid, a buoyancy-driven liquid droplet rising in a periodically
constricted capillary tube, and a pressure-driven droplet passing through a small
hole in a pipe. The results were reasonably agreeable with experimental data. [34]
developed a front-tracking method to simulate the evaporation of liquid droplets,
driven by temperature or species gradient, in two dimensions. The equations are
solved by a finite difference method, using a Cartesian uniform grid. The authors
present a species gradient phase change model, where the mass transfer occurs due
to a species mass fraction gradient, even when the temperature is the same for
both phases. The Clausius-Clapeyron relation is used to compute the species mass
fraction and the evaporation mass flux at the interface.

The Arbitrary Lagrangian-Eulerian (ALE) formulation, which is based on front-
tracking, was developed in an effort to combine the good characteristics of both the
Lagrangian and Eulerian approaches. In the ALE formulation, the computational
mesh nodes can be moved with the continuum. Due to this freedom, parts of special
interest to the simulation can be advected, like the fluid interface in two-phase flow
for example, while maintaining good quality elements and allowing greater contin-
uum deformation than a purely Lagrangian approach would. The ALE formulation
allows for the computational elements to move position, because of that, in two-phase
flows, the interface can be always positioned at an element boundary. This allows
for a sharp interface, with no necessity of a finite thickness, and very well-defined
properties in both fluid phases. It can also offer selective refinement, improving
mesh quality on selected regions as the simulation advances in time. This is par-
ticularly useful on two-phase flows, where for example one might want to refine the
fluid interface or the region occupied by a bubble or droplet. One big disadvantage
of the ALE formulation is that the movement of the fluid mesh eventually deforms
the mesh beyond usage, through collapsing of elements and mesh degeneration. To
avoid that, a re-meshing or mesh update procedure is necessary.
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(a) Interface Conforming
(ALE) over an unstructured
mesh in two dimensions.

(b) Front-Tracking method
over a structured mesh in
two dimensions.
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0.0 0.0 0.0 0.0

(c) Volume Tracking
method over a structured
mesh in two dimensions.

Figure 2.1: In a) an Interface Conforming example is presented. The mesh adapts
so that the interface is represented by the edges of a subset of elements. In the
picture, the element edges that separate the fluids are marked in red. In b) a Front-
Tracking method is displayed. The red line represents the fluid interface, called
the "front", which might be represented by line elements in two dimensions. The
curvature calculations are based on the fluid interface. In c) a Volume Tracking
method is exhibited. The numbers in each cell mark the percentage of one of the
fluid phases inside each cell. The interface is not represented explicitly but might be
re-constructed from information on the amount of fluid in each cell, using a variety
of methods. Represented in the figure is the SLIC reconstruction method.
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There are several works detailing ALE formulations, [35] presents a numerical
method for two-phase fluid flow with heat transfer and phase change, using the finite
element method combined with the ALE framework using an axisymmetric domain.
The interface was followed with an isotherm moving mesh and automatic re-meshing
is triggered when large mesh deformation happens. The thermodynamic equilibrium
approach was used to model the mass transfer rate at the interface, which assumes
the temperature of both fluids is the same at the interface, which is at saturation
conditions. This temperature is considered continuous and constant over the inter-
face. Significant accuracy for the surface tension representation was reported by the
method. The accuracy of the simulation was verified through commonly used bench-
marks for phase change problems. [36] proposed a finite element based method for
modeling compressible multi-phase flow that allows discontinuities of some variables
at the interface by using discontinuous basis functions while using C0 finite element
basis functions outside the interface. The mesh at the interface is captured by an
ALE framework, moving with the interface, and being updated when the mesh qual-
ity is no longer adequate. The author’s goal is to simulate high-rate phase change
phenomena, such as the collapse of bubbles or the combustion of densely energetic
materials. Such phenomena can lead to very high flow speeds in the lighter phase,
which assumes compressible behavior with possible multiple temporal scales. The
authors plan to include the addition of a surface tension term to the equations in
order to simulate the collapse and interaction of water vapor bubbles. [37] presented
an interface tracking ALE finite element method for the simulation of axisymmetric
two-phase flows, with dynamic boundaries. In this work, the mesh nodes move to
give a detailed description of the fluid interfaces while using adaptive mesh refining
and remeshing to guarantee high-quality mesh elements, being useful for very large
or periodic fluid domains. The method was validated by simulating the sessile test
case and the rising of single bubbles and drops with different fluid properties in chal-
lenging geometry, for example, a divergent channel and a corrugate channel. The
results were compared with exact results and other authors’ data, and the method
was considered an accurate simulation tool.

Additionally, [38] solved the incompressible Navier-Stokes equations for a two-
dimensional domain by discretizing them by Taylor-Hood elements, using an ALE
finite element method for an axisymmetric domain, where the mesh conforms to
the fluid interface, and re-meshes when the interface suffers deformations, following
its evolution. The research focus on developing an accurate and robust method
for interfacial flows driven by strong surface tension and weak viscous dissipation,
using an interface conforming method but eliminating spurious velocities, typically
associated with interface conforming methods. The technique is validated through
a series of benchmark tests with large interface deformations, in particular, bubble
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and droplet oscillations and dripping faucet are compared to theoretical and exper-
imental results available in the literature. [39] built a volume-averaged ALE finite
element model algorithm for predicting macrosegregation coupled with shrinkage
cavity, which has a strong impact on macrosegregation, in steel ingots. Macroseg-
regation is a macroscopic scale composition heterogeneity, that is a serious defect
in steel ingots. It forms during the solidification process, and it is caused by the
relative motion of solute-depleted solid phase and the solute-rich liquid phase. The
moving mesh was used to model the shrinkage cavity that forms while the material
solidifies.

Other methods based on front-tracking were developed. For example, the phase
field method which was first developed as a tool for modeling solid-liquid phase tran-
sitions where surface tension effects and non-equilibrium thermodynamic behavior
are significant at the surface [40], [41], [42].

The finite element discretization of the non-linear advective term of the Navier-
Stokes equations is a source of numerical instability when the mesh Peclet number
exceeds a critical value, which is often too small to be practical. There are some
strategies to deal with this instability, for example the Streamline Upwind/Petrov-
Galerkin method which fixes the excessive diffusion of previous upwind schemes by
adding diffusion only in the flow direction or the Least Squares Galerkin for elliptic
and second-order hyperbolic problems which achieve stability through the addition
of least square residuals to the Galerkin method. The method used on the present
work, the semi-Lagrangian method, treats the advective term explicitly. It is ad-
vantageous because it is unconditionally stable, and preserves the linear system of
equations symmetry. It has been used on many numerical applications. [43] used
the semi-Lagrangian to accurately solve the convective term in a multilevel adap-
tive enriched finite element method for simulation coupled flow-transport problems
on unstructured triangular meshes. The authors provided a number of numerical
benchmarks, such as flow past a circular cylinder and heat transport problem in the
Mediterranean Sea. [44] uses the semi-Lagrangian method to resolve the streaming
step in a Lattice Boltzmann method variant which uses non-uniform grids, to sim-
ulate incompressible flows. The authors conducted several numerical tests to verify
the method, including flow past a stationary cylinder, the lid-driven cavity test and
flow past an NACA0012 airfoil, finding the results in good agreement with the liter-
ature. [45] proposed a semi-Lagrangian approach to circumvent the strict time step
sizes for high-flow velocities typical of many high-speed compressible flows. Using
a semi-Lagrangian Lattice Boltzmann method, the authors demonstrated stability
for time steps that exceed typical CFL constraints in two and three dimensional
compressible flows. [46] uses the semi-Lagrangian scheme to discretize the advec-
tion part of the Navier-Stokes equations on his semi-implicit non-linear volume of
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fluid approach to simulate complex free-surface flows, using a combination of a finite
volume scheme for the discretization of the hydraulic head and finite differences for
the momentum equations.

The novelty of this thesis is the extension to three dimensions of a finite element
two-phase formulation based on front-tracking with the interface uncoupled from the
fluid mesh, combining the semi-Lagrangian method for treating the advective term
of the Navier-Stokes equations, which is unconditionally stable and preserves matrix
symmetry, with a finite element discretization of the Laplace-Beltrami operator to
calculate the curvature of the interface. This combination allows straightforward
numerical implementation, avoids the need for remeshing of the fluid mesh and offers
accurate results for three-dimensional problems in diverse geometric configurations.
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Chapter 3

Methodology

3.1 Navier-Stokes Equations

In this section, the equations that describe the motion of two immiscible fluids
separated by an explicit interface are presented. For two-phase flow, two different
formulations to describe motion can be adopted, in the first one, the "one-fluid"
formulation, both fluid phases are treated as a single fluid with variable properties
over the fluid domain, changing values at the interface. In the second option, each
immiscible phase is considered a different fluid, and the equations governing their
motion have proper boundary conditions at the interface. This work was developed
using the "one-fluid" formulation, and the equations in this chapter are presented
in this form. The equations exhibited in the following section are rewritten in non-
dimensional form and expressed as functions of known dimensionless groups. Details
regarding the development of the equations of fluid motion can be found in [47] and
[48].

The behavior of isothermal fluid motion can be described by the conservation
of mass and conservation of momentum equations. When the constitutive equation
for a Newtonian fluid is replaced in the conservation of momentum equation, the
Navier-Stokes equations are obtained. These equations can be further simplified for
the case of an incompressible fluid, and this is the form given below, starting with
the conservation of mass equation.

∇ · v = 0 (3.1)

where v represents velocity, followed by the conservation of momentum equation
for a Newtonian, incompressible fluid. It is worth noting, that this derivation of
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the momentum equation does not assume constant properties, leading to fluid
properties as functions of position, and the non-explicit Laplacian term.

ρ(x)

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · µ(x)(∇v +∇vT ) + ρ(x)g + f (3.2)

In the equation above, t represents the time, p represents the pressure and ρ(x)

represents the fluid specific mass at the point x. Likewise, µ(x) represents the fluid
viscosity. f is the term representing body force, and g is the gravity force acting on
the fluid. The term ∇vT is considered in the current model due to the variation of
fluid properties across the interface.

For this work, the force due to surface tension force f will be inserted as a
volumetric force, through the continuum surface force method, as done in [49]. The
surface tension force can be represented by

f = σκδn (3.3)

where σ is the surface tension coefficient, κ is the interface’s mean curvature at a
point, δ is a Dirac delta function with support at the interface, and n an outward
normal to the interface. Replacing this term into the momentum equation, one finds

ρ(x)

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · µ(x)(∇v +∇vT ) + ρ(x)g + σκδn (3.4)

The equations above can be rewritten into their non-dimensional form replacing
their dimensional units with their non-dimensional form as given by
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v

V
, x∗ =

x

L
, t∗ =

tV

L
, p∗ =

p

ρdV 2
, ρ∗ =

ρ

ρd
, µ∗ =

µ

µd

,

∇∗ = ∇L, g∗ =
g

go
, σ∗ =

σ

σo

, κ∗ = κL, δ∗ =
δ

L

(3.5)

where L and V refer to characteristic length and characteristic velocity, respectively.
go and σo are the reference gravity acceleration and reference surface tension coef-
ficient. The superscript ∗ refers to non-dimensional quantities, and the subscript d

refers to the denser fluid property, be it specific mass or viscosity.
Replacing the non-dimensional parameters into the mass conservation equation,

one obtains

V

L
∇∗ · v∗ = 0 (3.6)

which can then be multiplied by L/V to result in

∇∗ · v∗ = 0. (3.7)

To obtain the non-dimensional momentum equation, one can proceed in the
same fashion, applying the non-dimensional parameters to the momentum equation.
Doing so, one obtains the following expression:

ρ∗ρd

(
∂v∗

∂t

V 2

L
+ v∗ · ∇∗v∗V

2

L

)
= −∇∗p∗

ρdV
2

L

+
1

L
∇∗ · µ∗µd

(
∇∗v∗V

L
+∇∗v∗T V

L

)
+ ρ(x)∗g∗ρdgo +

1

L2
σoσ

∗κ∗δ∗n.

(3.8)
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The equation above can be multiplied by L/ρdV
2 to result in

ρ(x)∗
(
∂v∗

∂t
+ v∗ · ∇v∗

)
= −∇∗p∗ +

µd

ρdV L
∇∗ · µ(x)∗(∇∗v∗ +∇∗v∗T )

+
ρ(x)∗g∗L

V 2
go +

σo

LV 2ρd
σ∗κ∗δ∗n.

(3.9)

The terms σ∗κ∗δ∗n can be grouped into f∗. One can also recognize three di-
mensionless numbers expressed in the equation. The Reynolds number, the Weber
number, and the Froude number.

The Reynolds number is given by the following expression:

Re =
ρdV L

µd

(3.10)

and can be understood as a ratio of advection and diffusion occurring on a flow, or
a ratio of inertial effects and viscous effects.

The Weber number is given by the following expression:

We =
ρdLV

2

σo

(3.11)

and it relates inertial effects to the surface tension effects. The surface tension coef-
ficient, σ is taken as constant, excluding Marangoni effects acting on the interface.

The Froude number is given by the following expression:

Fr =
V√
gL

(3.12)
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and it relates the inertial effects to the effects provoked by an external field, in this
case, gravity.

Replacing the surface tension force and the dimensionless numbers presented,
the non-dimensional form of the momentum equation is obtained, given by the
following equation:

ρ(x)∗
(
∂v∗

∂t∗
+ v∗ · ∇∗v∗

)
= −∇∗p∗

+
1

Re
∇∗ · µ∗[∇∗v∗ + (∇∗v∗)T ] +

1

Fr2
ρ(x)∗g∗ +

1

We
f∗

(3.13)

Gravity driven flows do not have a velocity value to take as reference. For
those flows, gravity is used as reference, and different non-dimensional numbers are
utilized, the Archimedes and Eötvös numbers, given respectively by:

Fr = 1 N =
ρ2cgoD

3
o

µc

Eo =
ρcgoD

2
o

σo

(3.14)

where Do is the bubble’s diameter or the channel’s diameter. The Archimedes
number represents the weight of the gravitational forces against the viscous forces,
and the Eötvös number is a ratio of gravitational forces to the surface tension force.

In a gravity driven flow, one can simply replace in Eq. 3.2 the values for
Re = N

1
2 , We = Eo and Fr = 1. When studying Taylor bubbles, the liquid film

thickness is a flow parameter of interest. It can be calculated using an equation
derived from lubrication theory, which is a function of the Morton number, given by:

Mo =
µ4
cgo

ρcσ3
o

=
We3

FrRe4
=

Eo3

N2
(3.15)
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3.2 Boundary and Initial Conditions

A well-posed problem modeled by a differential equation requires boundary con-
ditions for a unique solution to be found from the set of possible solutions. The
boundary condition is a constraint, a known value of the differential equation at
a given point, that restricts the number of available solutions for that differential
equation.

One type of boundary condition for a fluid problem is the flow condition when
the fluid is in contact with an unmovable, solid surface. Disregarding a scenario
where the solid is composed of a porous material, it is clear that the fluid cannot
penetrate the solid. Therefore the fluid velocity perpendicular to the solid surface is
zero. The velocity tangential to the solid surface is also null. This fact is confirmed
experimentally, and it is attributed to the fluid’s viscosity.

The initial conditions describe the state of the system, and the field variable
values, at the starting point in time.

When solving a differential equation numerically, the boundary conditions and
initial conditions should reflect the conditions described above. The boundary con-
ditions can be classified in Dirichlet boundary conditions, where the solution value
is prescribed at the boundary, or Neumann boundary condition which prescribes
the value of the solution’s derivative at the boundary, more details in [50].

The boundary conditions used in this work are described below:

• No-slip condition (or wall). The no-slip condition is a prescribed velocity
condition, where all velocity component values are set to zero.

• Inflow condition. The inflow condition is a prescribed velocity condition, set-
ting the velocity values to the desired values. This is intended to represent a
mass influx into the problem’s domain.

• Outflow condition. The outflow condition is a prescribed pressure condition,
where the pressure values are set to zero. This represents a mass flow outside
the problem’s domain.

• Symmetry condition. The symmetry condition imposes a null velocity value
in the direction normal to the symmetry plane. The tangential velocity com-
ponents are allowed to be non-null. The symmetry condition is useful in situ-
ations where, if the geometry permits, it is convenient to represent only part
of the problem’s domain, saving on computational costs. Symmetry boundary
conditions are applicable not only to symmetric problems but also to problems
where the geometry is periodic.
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3.3 Finite Element Method

The finite element method is a computational technique used to solve differential
and integral equations. it is widely used in engineering to solve problems in fluid
dynamics, heat transfer, structural analysis, and more, as it can provide a very
accurate approximate solution where a direct analytical solution would be difficult
to obtain.

The method consists of dividing the problem domain into discrete finite-sized
partitions called elements which are interconnected at specific points called nodes.
These elements can be of a variety of shapes, in one, two, or three dimensions, for
example, line segments, triangles, quadrilaterals, tetrahedrons, and others [51]. The
finite element method uses a weighted residual formulation or variational formulation
of the differential equation to obtain an approximation of its solution at the nodes.
This formulation can be obtained by multiplying the equation by a test function
and integrating it over the entire domain of the problem. The solution error does
not need to be zero throughout the entire domain. Instead, the integral of the error,
also known as the residuum, must vanish to achieve a solution.

The finite element method can solve problems with complex geometries and
boundary conditions because it does not require a specific shape for the finite el-
ements, allowing for the representation of irregularly shaped domains and varying
boundary conditions.

The starting point is the Navier-Stokes equations for incompressible flow, as
detailed in the previous section, where the ∗ superscript was dropped for convenience

∇ · v = 0 (3.16)

ρ(x)

(
∂v

∂t
+v ·∇v

)
= −∇p+

1

Re
∇·µ(x)[∇v+(∇v)T ]+

1

Fr2
ρ(x)g+

1

We
f (3.17)

which are valid for an arbitrary domain Ω ⊂ Rm, presented in fig. 3.1 , and the
following initial and boundary conditions
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Γ1 Γ2

Figure 3.1: Three dimensional arbitrary domain Ω, with boundaries Γ1 and Γ2 visible
on its surface, represented in gray and blue, respectively

v = vΓ and ∇p · n = 0 in Γ1 (3.18a)

(n · ∇)v · n = 0 and p = 0 in Γ2 (3.18b)

vt=0 = pt=0 = 0 (3.18c)

where vt=0 represents the initial velocity at the points that do not belong to Γ1 or Γ2

and vΓ the prescribed velocity values at the boundary domain. These equations can
be used to represent the previously described boundary conditions. For example:

• The inflow condition can be obtained by setting vx = 1, vy = 0, vz =

0 and ∇p · n = 0.

• The no-slip condition can be obtained by setting v = 0 and ∇p · n = 0.

• The outflow condition can be obtained by setting (n·∇)v ·n = 0 and p = 0.

Multiplying the equations 3.16 and 3.17 by weighting functions w and q,
associated to velocity and pressure respectively, results in

∫
Ω

{
ρ(x)

(
∂v

∂t
+ v · ∇v

)
+∇p− 1

Re
∇ · µ(x)[∇v + (∇v)T ]

− 1

Fr2
ρ(x)g − 1

We
f

}
·wdΩ = 0

(3.19)

∫
Ω

(∇ · v) · qdΩ = 0 (3.20)
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which can be added up and written as

∫
Ω

ρ(x)

{
∂v

∂t
+ v · ∇v

}
·wdΩ +

∫
Ω

∇p ·wdΩ

−
∫
Ω

{
1

Re
∇ · µ(x)[∇v +∇vT ]

}
·wdΩ−

∫
Ω

1

Fr2
ρ(x)g ·wdΩ

−
∫
Ω

1

We
f ·wdΩ +

∫
Ω

(∇ · v) · qdΩ = 0

(3.21)

The first term on equation 3.21 is non-linear and will be treated separately by
a first-order semi-Lagrangian method. It can be written as

∫
Ω

ρ(x)

{
∂v

∂t
+ v · ∇v

}
·wdΩ =

∫
Ω

ρ(x)
Dv

Dt
·wdΩ (3.22)

The third term on equation 3.21 contains a second-order derivative, thus it
requires that the interpolation functions be quadratic or higher order so that
they can be differentiated twice. To address this issue, Green’s Theorem can be
employed to reduce the second-order derivative to a lower-order term, thus reducing
the demand for high-order functions. This is a standard technique used in the finite
element method and can be found in classical literature such as [51]. Firstly, the
term can be separated as follows

∫
Ω

{
∇·µ(x)[∇v+∇vT ]

}
·wdΩ =

∫
Ω

[∇·µ(x)∇v]·wdΩ+

∫
Ω

[∇·µ(x)∇vT ]·wdΩ (3.23)

Green’s theorem for vector fields, where Ω ⊂ Rm, Γ = ∂Ω is the boundary of
domain Ω, and u,w : U ⊂ Rm → Rm are vectors fields, is given by
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∫
Ω

∇2u ·wdΩ =

∫
Γ

n · (∇u ·w)dΓ−
∫
Ω

(∇u : ∇wT )dΩ. (3.24)

Applying it on both terms on the right side of equation 3.23, results in

∫
Ω

[∇ · µ(x)∇v] ·wdΩ =

∫
Γ

µ(x)n · (∇v ·w)dΓ−
∫
Ω

µ(x)∇v : ∇wTdΩ (3.25)

and

∫
Ω

[∇·µ(x)∇vT ] ·wdΩ =

∫
Γ

µ(x)n · (∇vT ·w)dΓ−
∫
Ω

µ(x)∇vT : ∇wTdΩ (3.26)

which can be summed and replaced back into equation 3.23 as

∫
Ω

∇ · µ(x)[∇v +∇vT ] ·wdΩ =

∫
Γ

n · [µ(x)(∇v +∇vT ) ·w]dΓ

−
∫
Ω

µ(x)[(∇v +∇wT ) : ∇wT ]dΩ

(3.27)

As presented in [52], the weight function w is required to be zero at the domain’s
Dirichlet’s boundary conditions, and so the first term on the right side of equation
3.27 is null. The same procedure can be applied to the pressure term

∫
Ω

∇p ·wdΩ = −
∫
Ω

p∇ ·wdΩ +

∫
Γ

pw · ndΩ (3.28)
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where the boundary term also becomes null. Replacing both results above in 3.21,
gives the following equation

∫
Ω

ρ(x)
Dv

Dt
·wdΩ −

∫
Ω

p · ∇wdΩ +
1

Re

∫
Ω

µ(x)(∇v +∇vT ) : ∇wdΩ

− 1

Fr2

∫
Ω

ρ(x)g ·wdΩ − 1

We

∫
Ω

f ·wdΩ +

∫
Ω

(∇ · v) · qdΩ = 0

(3.29)

3.4 Element Discretization

It was stated at the start of the chapter that the finite element method divides the
spatial domain into several finite-sized elements, this division turns the continuum
strong form of the problem into a discrete system of equations.

The discrete solution for the velocity components, pressure, and the gravity and
surface tension force can be expressed in terms of shape functions and their values
at the finite element nodes by

u(x) ≈ ue(x) =
n∑

i=1

ue
iNi(x)

v(x) ≈ ve(x) =
n∑

i=1

veiNi(x)

w(x) ≈ we(x) =
n∑

i=1

we
iNi(x)

p(x) ≈ pe(x) =
m∑
j=1

pejLj(x)

g(x) ≈ ge(x) =
m∑
i=1

geiNi(x)

(3.30)

where Ni(x) and Lj(x) are approximation functions used to interpolate the values
of the velocity components u, v, w, the pressure p and the gravitational force g

inside a finite element. These are called interpolation functions or shape functions
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and they are commonly polynomials because they can be easily derived from
interpolation theory and give exact results when integrated numerically. They must
also respect the following condition

N e
i (xj) = Le

i (xj) = δij (3.31)

which means that at a given node i, the value of Ni must be one, and zero at all
other nodes, the same rule applies for Li.

3.5 Finite Element Discretization of the Navier

Stokes Equations

To complete the finite element discretization of the Navier Stokes equations,
one replaces the values of u, p, g and f in the weak form displayed in 3.29 for the
approximations expressed in 3.30. In this step, the surface tension term will be
omitted, its discretization will be described separately in the following section. The
discretization process is much easier detailed when the quantities are expressed in
index notation, so the weak form is expressed as

∫
Ω

ρ

[
Du

Dt
wx +

Dv

Dt
wy +

Dw

Dt
wz

]
dΩ −

∫
Ω

p

[
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

]
dΩ

+
1

Re

∫
Ω

µ

[(
∂u

∂x

∂wx

∂x
+

∂u

∂y

∂wy

∂x
+

∂u

∂z

∂wz

∂x
+

∂v

∂x

∂wx

∂y

+
∂v

∂y

∂wy

∂y
+

∂v

∂z

∂wz

∂y
+

∂w

∂x

∂wx

∂z
+

∂w

∂y

∂wy

∂z
+

∂w

∂z

∂wz

∂z

)
+

(
∂u

∂x

∂wx

∂x
+

∂v

∂x

∂wy

∂x
+

∂w

∂x

∂wz

∂x
+

∂u

∂y

∂wx

∂y

+
∂v

∂y

∂wy

∂y
+

∂w

∂y

∂wz

∂y
+

∂u

∂z

∂wx

∂z
+

∂v

∂z

∂wy

∂z
+

∂w

∂z

∂wz

∂z

)]
dΩ

− 1

Fr2

∫
Ω

ρ(gxwx + gywy + gzwz)dΩ = 0

(3.32)

where u, v and w are the velocity components on the x, y and z directions, similarly,
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wx, wy and wz are the weight function components in the Cartesian directions.
Note that one can express the above equation as one equation for each of the
velocity components, including the mass conservation equation, and if all three
equations are satisfied, then the above equation is automatically satisfied

∫
Ω

ρ
Du

Dt
wxdΩ −

∫
Ω

p
∂wx

∂x
dΩ +

1

Re

∫
Ω

µ

[(
∂u

∂x

∂wx

∂x
+

∂u

∂y

∂wy

∂x
+

∂u

∂z

∂wz

∂x

)
+

(
∂u

∂x

∂wx

∂x
+

∂u

∂y

∂wx

∂y
+

∂u

∂z

∂wx

∂z

)]
dΩ

− 1

Fr2

∫
Ω

ρgxwxdΩ +

∫
Ω

∂u

∂x
qdΩ. = 0

(3.33)

∫
Ω

ρ
Dv

Dt
wydΩ −

∫
Ω

p
∂wy

∂y
dΩ +

1

Re

∫
Ω

µ

[(
∂v

∂x

∂wx

∂y
+

∂v

∂y

∂wy

∂y
+

∂v

∂z

∂wz

∂y

)
+

(
∂v

∂x

∂wy

∂x
+

∂v

∂y

∂wy

∂y
+

∂v

∂z

∂wy

∂z

)]
dΩ

− 1

Fr2

∫
Ω

ρgywydΩ +

∫
Ω

∂v

∂y
qdΩ. = 0

(3.34)

∫
Ω

ρ
Dw

Dt
wzdΩ −

∫
Ω

p
∂wz

∂z
dΩ +

1

Re

∫
Ω

µ

[(
∂w

∂x

∂wx

∂z
+

∂w

∂y

∂wy

∂z
+

∂w

∂z

∂wz

∂z

)
+

(
∂w

∂x

∂wz

∂x
+

∂w

∂y

∂wz

∂y
+

∂w

∂z

∂wz

∂z

)]
dΩ

− 1

Fr2

∫
Ω

ρgzwzdΩ +

∫
Ω

∂w

∂z
qdΩ. = 0

(3.35)

The equations described above must hold true for any choice of the weight
functions w and q. One choice for the weight functions is to use the same functions
used to interpolate the velocity components and the pressure inside the element:

wx = wy = wz =
n∑

k=1

Nk(x) q =
m∑
j=1

Lj(x). (3.36)
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This is called the Galerkin method. Replacing the approximation for the weight
functions w given in 3.36 into equations 3.33 through 3.35, along with the approxi-
mations in 3.30.

For brevity, the summation sign will be omitted in the following equations. The
result of the replacement, given that DNi/Dt = 0, is given bellow

∫
Ω

ρ
Dui

Dt
NiNkdΩ −

∫
Ω

Ljpj
∂Nk

∂x
dΩ

+
1

Re

∫
Ω

µ

[(
∂Ni

∂x
ui
∂Nk

∂x
+

∂Ni

∂y
ui
∂Nk

∂x
+

∂Ni

∂z
ui
∂Nk

∂x

)
+

(
∂Ni

∂x
ui
∂Nk

∂x
+

∂Ni

∂y
ui
∂Nk

∂y
+

∂Ni

∂z
ui
∂Nk

∂z

)]
dΩ

− 1

Fr2

∫
Ω

ρgxNkdΩ +

∫
Ω

∂Nk

∂x
ujLjdΩ = 0

(3.37)

∫
Ω

ρ
Dvi
Dt

NiNkdΩ −
∫
Ω

Ljpj
∂Nk

∂y
dΩ

+
1

Re

∫
Ω

µ

[(
∂Ni

∂x
vi
∂Nk

∂y
+

∂Ni

∂y
vi
∂Nk

∂y
+

∂Ni

∂z
vi
∂Nk

∂y

)
+

(
∂Ni

∂x
vi
∂Nk

∂x
+

∂Ni

∂y
vi
∂Nk

∂y
+

∂Ni

∂z
vi
∂Nk

∂z

)]
dΩ

− 1

Fr2

∫
Ω

ρgyNkdΩ +

∫
Ω

∂Nk

∂y
vjLjdΩ = 0

(3.38)

∫
Ω

ρ
Dwi

Dt
NiNkdΩ −

∫
Ω

Ljpj
∂Nk

∂z
dΩ

+
1

Re

∫
Ω

µ

[(
∂Ni

∂x
wi

∂Nk

∂z
+

∂Ni

∂y
wi

∂Nk

∂z
+

∂Ni

∂z
wi

∂Nk

∂z

)
+

(
∂Ni

∂x
wi

∂Nk

∂x
+

∂Ni

∂y
wi

∂Nk

∂y
+

∂Ni

∂z
wi

∂Nk

∂z

)]
dΩ

− 1

Fr2

∫
Ω

ρgzNkdΩ +

∫
Ω

∂Nk

∂z
wjLjdΩ = 0

(3.39)

The continuity equation is linked to the pressure and thus the terms derived
from it are evaluated at the same nodes. The weight function for the continuity
equation uses the same interpolation function as the pressure. The terms of the
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equations can be represented by

m =
n∑

i=1

n∑
k=1

∫
Ωe

NiNkdΩ
e qx =

m∑
j=1

n∑
k=1

∫
Ωe

Lj
∂Nk

∂x
dΩe

qy =
m∑
j=1

n∑
k=1

∫
Ωe

Lj
∂Nk

∂y
dΩe qz =

m∑
j=1

n∑
k=1

∫
Ωe

Lj
∂Nk

∂z
dΩe

dx =
n∑

k=1

m∑
j=1

∫
Ωe

Lk
∂Nj

∂x
dΩe dy =

n∑
k=1

m∑
j=1

∫
Ωe

Lk
∂Nj

∂y
dΩe

dz =
n∑

k=1

m∑
j=1

∫
Ωe

Lk
∂Nj

∂z
dΩe kxx =

n∑
i=1

n∑
k=1

∫
Ωe

∂Ni

∂x

∂Nk

∂x
dΩe

kyy =
n∑

i=1

n∑
k=1

∫
Ωe

∂Ni

∂y

∂Nk

∂y
dΩe kzz =

n∑
i=1

n∑
k=1

∫
Ωe

∂Ni

∂z

∂Nk

∂z
dΩe

kxy =
n∑

i=1

n∑
k=1

∫
Ωe

∂Ni

∂x

∂Nk

∂y
dΩe kyx =

n∑
i=1

n∑
k=1

∫
Ωe

∂Ni

∂y

∂Nk

∂x
dΩe

kxz =
n∑

i=1

n∑
k=1

∫
Ωe

∂Ni

∂x

∂Nk

∂z
dΩe kzx =

n∑
i=1

n∑
k=1

∫
Ωe

∂Ni

∂z

∂Nk

∂x
dΩe

kyz =
n∑

i=1

n∑
k=1

∫
Ωe

∂Ni

∂y

∂Nk

∂z
dΩe kzy =

n∑
i=1

n∑
k=1

∫
Ωe

∂Ni

∂z

∂Nk

∂y
dΩe

(3.40)

Each of the terms above results in a matrix of dimensions ik, except for the g

matrices, which have kj dimension, and d, which have jk. It is important to note
that

kxy = kT
yz, kxz = kT

zx and kyz = kT
zy (3.41)

3.6 Discrete Surface Tension Force

The last term on equation 3.29 can be expanded to

1

We

∫
Ω

σδκn ·wdΩ (3.42)
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where σ is the surface tension coefficient, κ is the mean curvature, δ is the Dirac
delta function and n is the normal vector. The Dirac delta function is used as a
device to indicate that the surface tension exists only on the interface. It can be
embedded in the integral, by changing the integral limit, resulting in

− 1

We

∫
Γ

σκn ·wdΓ (3.43)

It is described in [53] that there is an operator that maps a point x of a given
surface to a vector C(x), obeying the following relation

C(x) = κn = ∇2
s(x) = ∇s · (∇sx) (3.44)

where ∇s is the gradient operator over surfaces and ∇2
s is the Laplacian operator

over surfaces. This operator is known as the Laplace-Beltrami operator for a given
surface. The application of the Laplace-Beltrami operator on any point of the surface
will produce its mean curvature at that point.

Moreover, as stated in [53], the Laplace-Beltrami operator is a generalization
of the Laplacian operator from flat spaces to manifolds. For Euclidean space, the
Laplace-Beltrami operator turns into the Laplacian operator. It is then possible to
represent equation 3.43 by

− 1

We

∫
Γ

σ∇2
sx ·wdΓ (3.45)

The surface tension coefficient was made non-dimensional by the Weber number,
and consequently can be treated as a constant, σ = 1. Applying Green’s identity
to equation 3.45
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−
∫
Γ

∇2
sx ·wdΓ =

∫
Γ

(∇sx : ∇sw)dΓ−
∫
C

(∇sx ·w) · ndC (3.46)

The second term on the right is an integral on the surface’s contour. The
surfaces presented in this work, due to their nature as bubbles or droplets, are all
closed surfaces and therefore have no contour, therefore the second term on the
right-hand side is null, resulting in

∫
Γ

(∇sx : ∇sw)dΓ =

∫
Γ

(
dx

dx

dwx

dx
+

dx

dy

dwx

dy
+

dy

dx

dwy

dx
+

dy

dy

dwy

dy

)
dΓ (3.47)

At this point, the interface can be discretized into triangular elements, as
presented in fig 3.4, of a of a three dimensional surface. The Galerkin finite element
method can be applied to the equation 3.47, using the following approximated
values over each element

x =
i∑

n=1

xe
iNi(x) y =

i∑
n=1

yeiNi(x) (3.48)

and

wx = wy =

j∑
n=1

Nj(x) (3.49)

where the shape functions N(x) are the same for the coordinates and for the weight
functions. Again, the shape functions utilized are linear triangle shape functions,
presented in section 3.9. Taking into account that xe

i is constant, replacing
equations 3.48 and 3.49 results in
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∫
Γ

∇sx : ∇swdΓ =

∫
Γ

(
xi
∂Ni

∂x

∂Nj

∂x
+ xi

∂Ni

∂y

∂Nj

∂y

+ yi
∂Ni

∂x

∂Nj

∂x
+ yi

∂Ni

∂y

∂Nj

∂y

)
dΓ

(3.50)

For brevity, the terms in the equation above can be represented as

cξξ =

∫
Γ

∂Ni

∂x

∂Nj

∂x
dΓ

cηη =

∫
Γ

∂Ni

∂y

∂Nj

∂y
dΓ

(3.51)

and the operator C, the finite element discretization of the Laplacian operator for
a surface, defined as

C = cξξ + cηη (3.52)

The terms on the right, cξξ and cηη represent the matrices that form the Laplacian
operator for the linear triangular element.

The operator C presented above is defined for a local coordinates system, and
cannot be directly applied to the surface inserted in a three-dimensional space. A
transformation of local two-dimensional coordinates into global three-dimensional
coordinates is necessary when assembling the operator. The local two-dimensional
coordinate system can be observed in fig. 3.2, where ξ and η are defined locally in
two dimensions, and the points i, j and k are defined in three-dimensional space.

The ξ unit vector can be defined as the normalized difference between two
points, the vertices i and j in fig. 3.2. This vector is defined by
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ξ

η

i j

k

Figure 3.2: Local two-dimensional coordinate system, plotted over a triangle ijk.
The points i, j and k are defined in three dimensions

ξ =
xj − xi

||xj − xi||
(3.53)

The η unit vector is required to be perpendicular to both the triangle surface
and the unit vector ξ. To achieve this, the definition given below can be used

η =
[(xj − xi)× (xk − xi)]× (xj − xi)

||(xj − xi)× (xk − xi)]× (xj − xi)||
(3.54)

where the first cross product in equation 3.54 generates a vector perpendicular to the
triangle’s surface. The second cross product, between the resulting vector of the first
cross product and the (xj − xi) subtraction results in a vector that is perpendicular
to both the triangle’s surface and the unit vector ξ. The division by the modulus
turns it into a unit vector.

Once the coordinate transformation is done, the Laplacian operator can be
applied to the Cartesian coordinates of the mesh element nodes, obtaining the
vector coordinates.
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Cx = Cx

Cy = Cy

Cz = Cz

(3.55)

where x, y and z are the nodal Cartesian coordinates.
A finite element triangle mesh is composed of flat surfaces, where the surface

normal changes abruptly at the edges. If one were to measure the curvature
along a finite element mesh, one would find regions of zero curvature, followed
by "spikes" due to the abrupt change. Clearly, this is not desired, since the
interfaces the triangle mesh is representing are smooth surfaces. To complete the
discretization and obtain the proper curvature values, it is necessary to divide the
curvature values by the area around each node. To achieve this, the following is done:

C(x)t =
√

C2
x + C2

y + C2
z (3.56)

and then dividing the C(x)t by the nodal area, the calculation of which is presented
in a subsequent section, to obtain the nodal curvature:

κ =
C(x)t
Ai

(3.57)

where Ai is the area around node i. The surface tension term is then represented by

f = − 1

We
[κn] (3.58)

this representation was derived by integrating over the fluid interface. it is not
applicable to the whole fluid domain. This was achieved by embedding the Dirac
delta function into the integral, however, this is not desirable when adding the
surface force term to the Navier-Stokes equations, and thus it is necessary to make
the Dirac delta explicit again. One way to accomplish this is to use the Heaviside
function gradient. The gradient of the Heaviside function, described in the next
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section, serves as a Dirac delta based on the interface and points in the normal
direction, therefore

f = − κ

We
[∇Hxi+∇Hyj+∇Hzk] (3.59)

and this equation can be replaced directly into the Navier-Stokes equations dis-
cretization.

3.6.1 Surface Tension Force Assignment

The surface tension force is distributed from the interface mesh to the fluid mesh
through the CSF method [49]. In this method, the surface tension force which exists
only on the interface is transformed into a volumetric force acting upon the whole
domain, but with non-null values only on nodes located at the interface by means
of a Dirac delta function. This transformation is made simply by selecting a fluid
mesh node, searching for the closest interface mesh node, and assigning the curvature
value from the interface node to the fluid mesh node.

While this method is sufficiently accurate, in simulations where spurious oscil-
lations appear, the interface mesh might suffer some warping or distortion, and an
interface node can have its curvature value modified in a way that does not represent
the region’s curvature, reflecting upon surface tension value calculated from it, and
affecting the simulation stability and accuracy. To alleviate these matters, in this
work, the surface tension force of a given fluid mesh node is calculated using the
curvature of the closest interface node like in the CSF method, but with an added
contribution from its neighbor nodes, following the formula given by

κfluid = aκinterface +
b

n

∑
i=n

κneighbor (3.60)

where κ is the curvature, n is the number of neighbours an interface node has, which
are the nodes present in elements the node belongs to, or the nodes resulting from
the umbrella operator applied to the analyzed node, and a and b are values between
0 and 1, typically, a = b = 0.5.
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Figure 3.3: Representation of a transversal cut of a fluid mesh preserving tetrahedra
faces with an interface mesh positioned at its center.

3.6.2 Fluid Interface Representation

When simulating two-phase flow, it is crucial to have some way of representing
the interface separating the immiscible fluids. Besides having the role of identifying
the two fluid phases, this interface is used to calculate the surface tension effects
through its curvature. In this work the fluid interface is represented by a closed sur-
face inserted in three dimensional space, constructed by triangular surface elements,
as presented in fig. 3.3. The nodes belonging to this interface mesh are not shared
by the fluid mesh. The coupling between the interface mesh and the fluid mesh is
effectuated when the interface mesh’s nodes are advected by the fluid mesh velocity
fields, and the surface tension force, inputted as a source term in the Navier-Stokes
equation, is calculated through the interface mesh’s curvature, obtained using the
Laplace-Beltrami operator.

The identification of the fluid phases is done through the use of the Heaviside
function, anchored at the interface mesh. In the finite element matrix assembly
process, if the interface "cuts through" an element, the properties assigned to that
element are an average from its nodal values.

The abrupt change in fluid properties at the interface can cause velocity insta-
bilities to occur, the so called spurious currents. In order to avoid this, the interface
can be given an artificial thickness to smooth the transition between phases. This
thickness is selected to be a few element edge lengths. The thickness value is fixed,
and it doesn’t "smear" over time. It offers a trade-off between accuracy and simu-
lation stability. Ideally, the thickness value is as close to zero as possible, as to give
more accurate results, but for simulations where instabilities appear, increasing the
value smooths the velocity fields providing a more stable, if slightly less accurate,
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result.

3.6.3 Heaviside Function

The Heaviside function is used as a step function to identify the fluid phases
and smooth the fluid properties transition across the interface. When constructing
the fluid interface, a vector normal to it is assigned to each interface node. When
simulating a closed interface, such as a bubble or droplet, this normal vector is
constructed to point outside the interface’s surface. Using the normal vector to
determine the sign, a signed distance d(x) is calculated, measuring the distance
from each fluid mesh node to the nearest interface node. This signed distance is
used as input to the Heaviside function, which outputs a value of 1 for the inside of
the interface and a value of 0 for the outside. If the fluid interface is given a finite
thickness with the intent of smoothing out the sharp property transition across the
interface, the Heaviside function outputs a value between 0 and 1 when evaluated
inside the fluid interface. The Heaviside function utilized in this work is a smooth
function detailed in [54], and is given by

H(x) =


1, if d(x) > ϵ

0, if d(x) < −ϵ

1− 0.5

[
1 +

d(x)

ϵ
+

1

π
sin

(
πd(x)/ϵ

)]
, otherwise

(3.61)

where d(x) is the signed distance from the evaluated fluid mesh node to the nearest
interface node and ϵ is the parameter defining the interface thickness. The interface
thickness is a numerical convenience, added to improve the simulation’s stability
by smoothing the fluid properties transition at the interface. It was found that
a higher value is usually detrimental to the simulation’s accuracy; therefore it’s
desirable to maintain its value low, usually in range of 1−2 element sizes. The fluid
phase’s properties, ρ(x), and µ(x), can be calculated using the Heaviside function,
using the following formula

ρ(x) = ρ1H(x) + ρ2[1−H(x)] µ(x) = µ1H(x) + ρ2[1−H(x)] (3.62)
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where ρ1, µ1 represent the fluid specific mass and viscosity for the fluid inside the
interface, and ρ2 and µ2 are the properties of the fluid outside the interface.

3.6.4 Interface Mesh Coupling

At the start of each time step, the interface mesh curvature is calculated. Since
the interface mesh is not geometrically coupled to the fluid mesh, this curvature
value needs to be assigned to the fluid mesh, in order to calculate surface tension.
This assignment is accomplished by going through all fluid mesh nodes, identifying
through a distance function the nearest interface node, and assigning the curvature
value of the closest interface node to the corresponding fluid mesh node. The surface
tension force is then calculated and the primary variables computed.

The interface mesh is treated based on a Lagrangian reference, and as the
simulation progresses through time, its position needs constant updating to accom-
modate any movement. To achieve this, the velocity values for each interface node
is necessary. A search is conducted on the fluid mesh to identify the specific fluid
mesh element upon which each interface node resides. Following this determination,
a linear interpolation of the velocity values of the fluid mesh element nodes is
executed, and the resulting value is assigned to the corresponding interface node.
This process is repeated for all interface nodes, and then their positions are updated
by

xn+1
i = xn

i + vi∆t (3.63)

where xn+1
i is the new interface node position, xn

i is the previous time step interface
node position, vi is the discreet velocity assigned to the interface node and ∆t is
the time step. On simulations that present instabilities due to spurious velocity
fluctuations, each interface node position is updated based on its assigned velocity
and the velocity of their neighbor nodes. Therefore the following equation can be
used instead of the previous one:

xn+1
i = xn

i +

(
0.5vi +

0.5

n

∑
i=n

vneighbor

)
∆t (3.64)
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where n is the number of neighbors an interface node has, which are the nodes
present in elements the node belongs to, or the nodes resulting from the umbrella
operator applied to the analyzed node.

3.7 Matrix Representation

Equations 3.37 through 3.39 and equation 3.59 can be written as

mρu̇− qxp+
1

Re
µ(2kxx + kyy + kzz + kyx + kzx)u

− 1

Fr2
ρmgx −

∇H

We
(cxx + cyy)x = 0

(3.65)

mρv̇ − qyp+
1

Re
µ(kxx + 2kyy + kzz + kxy + kzy)v

− 1

Fr2
ρmgy −

∇H

We
(cxx + cyy)y = 0

(3.66)

mρẇ − qzp+
1

Re
µ(kxx + kyy + 2kzz + kxz + kyz)w

− 1

Fr2
ρmgz −

∇H

We
(cxx + cyy)z = 0

(3.67)

and

dxu+ dyv + dzw = 0 (3.68)

These matrices encompass a single element, and to solve the equations for the
velocity and pressure fields over the whole domain, it is necessary to solve for all
elements simultaneously. To this end, the assembly process is necessary, where the
local element matrices are added to a global matrix producing a linear system of
equations. This is represented as follows
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A Q

D 0


un+1

pn+1

 =

B
0

 (3.69)

where the terms A, G, and D are sub-matrices, and B is a vector given bellow by

A =


µ

Re
2Kxx +

M

∆t

µ

Re
Kxy

µ

Re
Kyz

µ

Re
Kxy

µ

Re
2Kyy +

M

∆t

µ

Re
Kyz

µ

Re
Kxz

µ

Re
Kyz

µ

Re
2Kzz +

M

∆t

 (3.70)

Q =


Qx

Qy

Qz

 (3.71)

D =

[
Dx Dy Dz

]
(3.72)

and

B =


M

∆t
un + 1

Fr2
ρgx +

1
We

fx

M

∆t
vn + 1

Fr2
ρgy +

1
We

fy

M

∆t
wn + 1

Fr2
ρgz +

1
We

fz

 (3.73)

The choice for the matrix layout exhibited in 3.69, coupled with equation 3.41,
leads to the matrix being symmetric, but not positive definite, which impacts the
options available to solve it.
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3.8 The Semi-Lagrangian Method

The material derivative in the equation of conservation of momentum contains a
non-linear term v · ∇v, the convection term. When this term is added to the finite
element discretization through the Galerkin method, the problem’s solution might
contain spurious oscillations depending on the simulation’s Reynolds number and
chosen time step.

These spurious oscillations can be avoided in a number of ways. For example,
the Streamline Upwind Petrov-Galerkin (SUPG) achieves stabilization through the
use of different weight functions when developing the weak form, in a way that
balances the negative diffusion added by the central difference approximation. The
Characteristic Galerkin procedures split the equation into a convective and diffusive
equation, linking them through the boundary and initial conditions. Another way
to deal with instability due to the convection term is the Characteristic Based Split
scheme, which removes the pressure term from the momentum equation, allowing
for different interpolation functions. The details of these procedures can be read in
[51] and [55].

One convenient way to discretize the advection term is through the semi-
Lagrangian method. it is a method that first encountered use on weather prediction
[56], and offers simpler implementation compared to other options, preserves the
symmetry of matrices and presents itself unconditionally stable for large time steps.

A purely Lagrangian advection scheme would follow a set of particles over the
simulation time, but the particles’ destination might not offer regularly spaced or
convenient positions. On a finite element analysis, it is desirable to know the quan-
tities at fixed positions, the mesh nodes. The semi-Lagrangian scheme achieves this
goal by changing the set of particles at each time step, following the particles that
will occupy the mesh nodes’ positions at each time increment.

The particle set chosen at each time step is the set that after advection will
arrive exactly at the mesh nodes. Thus at each time step, one needs to search for
the points in the domain which will be transported to the mesh nodes position after
a time interval ∆t. Those are labeled departure points.

The material derivative of a given scalar function Ψ is given by

DΨ

Dt
=

∂Ψ

∂t
+ u

∂Ψ

∂x
+ v

∂Ψ

∂y
+ w

∂Ψ

∂z
(3.74)

This operator can be discretized by a first-order approximation given by
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DΨ

Dt
=

Ψn+1 −Ψn
d

∆t
(3.75)

where Ψd is the value of Ψ at the departure point. The departure points are found
by calculating

xd = xn − v∆t (3.76)

for each mesh node, where xd is the departure point, xn is the mesh node position
and v the velocity vector at point x. Once the departure point set is calculated, the
scalar Ψd is assigned from interpolation of the known nodal values of Ψ.

3.9 Element Shape Functions

The element shape functions define how the field variable is approximated over
the finite element, interpolating the field variable’s value at the element’s nodes.
These functions are required to have:
1) Continuity over the problem domain up to one less than the highest derivative
present in the weak form.
2) Linear independence, that is, no function can be obtained through a linear com-
bination of other functions.
3) Completeness, all terms led by a constant must be present up to the highest order
term. This requirement can be loosened if the lacking terms are "symmetric".
4) Equipresence, all the shape functions must have the same amount of terms that
are function of x, y, and z.

The polynomial function is widely used, due to its ease of differentiation, the fact
that it can be integrated numerically with exact results, and have its order increased
to improve the accuracy of the results.

In this section, the Mini Element used in the discretization of the Navier-Stokes
is described, along with the linear triangle element used in the discretization of the
Laplace-Beltrami operator.
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The variational formulation for the incompressible Navier-Stokes equations re-
sults in a saddle point problem. To achieve a solution for this problem, one needs
to observe restrictions on the combination of interpolation functions for the velocity
and pressure. To achieve a stable simulation for a mixed finite element method, and
to guarantee the existence and uniqueness of the solution, the compatibility condi-
tion called Ladyzhenskaya-Babuska-Brezzi (LBB) must be satisfied, the details can
be found in [57]. The LBB condition does not allow accurate results to be obtained
when shape functions of the same order for the velocity and pressure are utilized in
a standard finite element Galerkin discretization.

There are a number of methods to satisfy or circumvent the LBB condition, such
as the pressure-stabilizing Petrov-Galerkin (PSPG) developed in [58] or the poly-
nomial pressure projection method (PPPS) presented in [59]. One of the available
methods involves the proper choice of finite element. Elements like the Taylor-Hood
and Crouzeix and Raviart elements satisfy the condition. In this work, the mini
element developed by Arnold, Brezzi, and Fortin [60] was utilized. The mini el-
ement interpolates the pressure with piecewise linear barycentric shape functions
and interpolates the velocity fields with the piecewise linear barycentric shape func-
tions enriched with a bubble function that vanishes on the element boundary. This
bubble function is a product of the barycentric coordinates. Despite having a cubic
(quartic for three-dimensional elements) shape function in the bubble function, the
mini element exhibits linear convergence.

In the mini element, the linear shape functions are located at the element’s
corners, and the bubble function is located at the element’s centroid node, therefore
the velocity is assigned to five degrees of freedom per element, while the pressure
has four, the element’s corners. The bubble function is not a complete polynomial
and therefore has a slower rate of convergence, however, it only adds one single extra
degree of freedom. The name "mini" comes from the fact that the element possesses
the minimal amount of degrees of freedom to satisfy the LBB condition.

3.9.1 Barycentric Coordinates

Before approaching the elements’ shape function, it is important to describe
the barycentric coordinates for a given triangle and tetrahedron, since those shape
functions are based on the barycentric coordinates.

Triangle

In a given triangle, with corners i, j and k, for any point P arbitrarily located
inside the triangle, the linear coordinates for the point P are
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i j

k

P

Figure 3.4: Area coordinates for a given generic triangle ijk, where P is an arbitrary
point contained inside the triangle.

Ltri
i =

Ai

A
Ltri
j =

Aj

A
Ltri
k =

Ak

A
(3.77)

where A is the triangle’s total area, Ai is the area of the triangle created by points
j, k and P , Aj is the triangle created by points i, k and P and Ak is the triangle
formed by the points i, j and P . The sum of all linear coordinates must be

Ltri
i + Ltri

j + Ltri
k = 1 (3.78)

The area of the triangle can be obtained by inputting the triangle’s vertices’
Cartesian coordinates into the following matrix

A =
1

2
det

 1 x1 y1

1 x2 y2

1 x3 y3

 (3.79)
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P

Figure 3.5: Volume coordinates for a given generic tetrahedron ijkl, where P is an
arbitrary point contained inside the tetrahedron.

Tetrahedron

The barycentric coordinates for a tetrahedron are analogous to the triangle
coordinates presented above. Given a tetrahedron with corners i, j, k and l, and a
point P located at an arbitrary position inside the element, as given by fig. 3.5, the
linear coordinates of point P are

Li =
Vi

V
Lj =

Vj

V
Lk =

Vk

V
Ll =

Vl

V
(3.80)

where Vi is the volume of the tetrahedron shaped by the points P , j, k, and l and so
on. As long as point P is inside the element, the sum presented below is guaranteed

Li + Lj + Lk + Ll = 1 (3.81)

The volume of any tetrahedron can be found by inputting the point’s Cartesian
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coordinates into

V =
1

6
det


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

 (3.82)

3.9.2 Linear Triangle Element

The triangle element has three shape functions, one assigned to each vertex. Its
shape functions are quite simple, given by its barycentric coordinates

Ni = Ltri
i Nj = Ltri

j Nk = Ltri
k (3.83)

3.9.3 Mini Element

The representation for the Mini element can be seen in fig. 3.6 and its shape
functions are given by

Ni = Li − 64L1L2L3L4, for i = 1, 2, 3, 4

N5 = 256L1L2L3L4

(3.84)

where the indexes i = 1, 2, 3, 4 represent the element’s corner nodes, and i = 5

represents the node at the element’s centroid.

3.10 Finite Element Mesh

In this work, unstructured meshes were chosen for their greater flexibility in
adapting to complex geometries.
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Velocity
Pressure

centroid

Figure 3.6: Mini element representation, indicating the nodes assigned to the veloc-
ity and pressure. The pressure is assigned to nodes on the tetrahedron’s corners,
and the velocity is assigned to the corners, plus the node located at the centroid.
The integration on such coordinates can be done analytically, avoiding the costs of
numerical integration.

Unstructured meshes are meshes created by a non-uniform node distribution and
can be composed of irregularly shaped elements, including different element sizes.
Unstructured meshes also support different element shapes, such as tetrahedrons
and hexahedrons in the same mesh, as long as their interconnectivity is respected.

This non-uniform node distribution allows for many different geometries to be
represented. Where a structured mesh might be limited to regular shapes, with
straight boundaries, an unstructured mesh can adapt to irregular, changing, or
curved domains, through the use of piecewise linear shapes. The use of unstructured
meshes with the finite element method allows for great flexibility in problem domain
geometries.

The element size in unstructured meshes can vary greatly, allowing for selective
refinement of the problem domain, increasing refinement on areas where phenomena
of interest happen or the field variables present steeper gradients. It also allows for
a decrease in mesh resolution far from regions of interest to save on computational
costs, such as memory and simulation run time.

While structured meshes can also have refinement of particular areas and differ-
ently sized elements, these are often much less flexible and often generate a greater
number of elements compared to an unstructured mesh. A problem discretized by
a mesh with more elements usually requires more computational time to be solved.
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As a trade-off, due to the arbitrary connectivity between elements, unstructured
meshes require more memory to store and produce matrices with a sparser structure,
which can be slower to solve or restrict the choice of linear system solver.

Since an unstructured mesh is not constrained to regularly shaped elements,
care must be taken so that elements present in the mesh are well-shaped. For this
reason, the Delaunay tetrahedralization is utilized. The Delaunay tetrahedralization
constructs the mesh based on the dual graph of the Voronoi Diagram. It is a popular
choice for mesh construction and ensures the elements produced have good quality
[61].

To compare different results produced by a problem, and to measure the
refinement level of a given mesh, some type of element size metric must be utilized.
To this end, the average edge length, h was selected. it is an average because since
the mesh is unstructured, it cannot have a fixed edge length. The average edge
length offers an easy to understand metric when compared to the domain length,
as opposed to the average element volume, and it is the measure inputted directly
into the mesh generator. The average edge length can be calculated by

h =

∑i
n li
n

(3.85)

where l is the edge length and n is the number of edges contained in the mesh.
In meshes with different refinement levels, multiple average edge lengths might be
utilized, according to the selected refinement for each region of the problem’s domain.

3.11 Time Step Calculation

When executing a transient problem simulation, the simulation progresses in
time. The amount of time advanced is the time step. Ideally, this time step should
be small enough that the simulation captures the transient phenomena one wishes
to observe, such as the flow becoming fully developed, or the wake oscillations after
a bluff body, but large enough so that the simulation does not take an excessive
amount of time.

Another concern is that some discretization schemes for the Navier-Stokes equa-
tions contain terms that are conditionally stable. If the conditions imposed by
those terms are not met, the simulation does not produce accurate results. The
conditionally stable terms restrict the choice for the value of the time step incre-
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ment. Generally, the terms treated implicitly are unconditionally stable, while the
explicitly treated terms can be conditionally stable or unstable. More details about
stability can be found in [62]

In most discretization schemes, the convection term requires a time step restric-
tion. In this work, the material derivative is discretized explicitly by the semi-
Lagrangian technique. The semi-Lagrangian is unconditionally stable, not present-
ing any restriction on the time step utilized. it is desirable, however, to maintain
the time step under a certain limit, to preserve the method’s accuracy. The semi-
Lagrangian method has first-order accuracy in time, and the fluid’s trajectory is
considered a straight line. A larger time step increases the method’s error. To
reduce the concerns over the method’s accuracy, the time step constraint for the
semi-Lagrangian discretization of the convective term should be limited by:

∆tc <
hmin

umax

(3.86)

where hmin is the smallest element edge size of the fluid mesh, and umax is the
maximum velocity value, of any of the three velocity components, u, v, w

The other terms treated explicitly in this work are the gravity force and the
surface tension force. The surface tension term adds a constraint to the simulation
time step, as reported by [63] given by

∆tsf <

√
Weρavh3

2π
(3.87)

and the gravity force constrains the time step by the following equation, as denoted
by [64],

∆tg <

√
1

hmin

(3.88)

The time step that should be adopted when running a simulation, is the smallest
of the listed values above, or

∆t = min{∆tg,∆tsf ,∆tc} (3.89)
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Figure 3.7: Voronoi area for a node I in a triangular surface mesh. The blue area
bounds the Voronoi area for node I, belonging to the five triangular elements shown.
The red dot represents each triangle’s circumcenter.

3.12 Interface Element Area Calculation

To calculate the curvature at a given node it is necessary to assign a discrete area
value to it. In a surface mesh composed of triangular elements, the nodes are the
triangle’s vertices. One way to calculate the area around a node is the Voronoi area,
which is found by taking the midpoint of each triangle edge connected to a given
node and joining it to the triangle’s circumcenter. The resulting area is the Voronoi
area and can be observed in fig. 3.7. An alternative to using the Voronoi area is
performing the same process, but using the centroid instead of the circumcenter.
This produces the barycentric area, but this method presented less accurate results
when tested, compared to the Voronoi area.

A node belongs to multiple triangles in a mesh. To calculate the circumcenter
area for a given node I, the first step is to pick a triangle to which the node belongs
to and calculate the triangle’s circumcenter coordinates

C =
a2(b2 + c2 − a2)I+ b2(a2 + c2 − b2)J+ c2(a2 + b2 − c2)K

a2(b2 + c2 − a2) + b2(a2 + c2 − b2) + c2(a2 + b2 − c2)
(3.90)
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where C is the triangle’s circumcenter and I, J and K are the nodes at the triangles
vertices. One can define the following vectors

t1 =
J− I

2

t2 =
K− I

2

m1 = C− J+ I

2

m2 = C− K+ I

2

(3.91)

and calculate the circumcenter area by

Acirc =
1

2
(t1 ×m1 + t2 ×m2) (3.92)

The Voronoi area of a given node is obtained by repeating this process for each
triangle it belongs to, and summing the area values.

3.12.1 Obtuse Triangle Area Correction

The mean curvature calculated with AV oronoi proved to be reasonably accurate
as long as no obtuse triangles were found on the interface mesh. A single obtuse
triangle can skew the mean curvature values of the nodes belonging to it by a very
large margin, and refining the mesh shows no improvement at all. In fact, refining
the interface meshes can present even worse mean curvature values, if the refinement
process includes more obtuse angles in the elements.

For a right or acute triangle, the circumcentric areas of the three vertices add up
to the triangle’s area. For obtuse triangles, this is not the case, and the sum of all
circumcentric areas is greater than the triangle’s area. It seems this is what induces
the error in mean curvature.

In [65] the use of barycentric areas for obtuse triangles is proposed, and [66]
proposes to use 1/2 of the triangle’s area for the vertex with the obtuse angle and
1/4 of the triangle’s area for the other two vertices. However, these methods do not
show significant improvement, and depending on the mesh, can worsen the mean
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Figure 3.8: Obtuse Triangle IJK and its circumcenter C, marked as a red dot outside
the triangle’s boundaries. The Voronoi area for this triangle exceeds the triangle’s
total area when calculated for all three vertices. The area calculated using the edges
connected to the obtuse angle causes the distortion.

curvature error.
In this work, we used the following correction, which proved to be both accurate

and straightforward to implement. An obtuse triangle is given, with vertices I, J,
K and circumcenter C. In this triangle, the vertex I has the obtuse angle, as shown
in fig. 3.8. The areas are calculated as follows

AI = Acirc

AJ =
c

b+ c
(area− AI)

AK =
b

b+ c
(area− AI)

(3.93)

where area is the triangle’s area, b the edge length opposite to vertex J and c the
edge length opposite to vertex K. it is important to note that AJ and AK can be
negative.

3.13 Numerical Tools

All meshes utilized in this work, both for the fluid and fluid interface were gen-
erated using the free mesh generator Gmsh [67].

The Finite Element Method code, including the mesh reading and file outputting,
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was developed by the author, using C++ language, based on the object-oriented
paradigm. The linear algebra operations and the solution for the linear systems of
equations were generated using the library EIGEN.

The code was compiled with the GNU Compiler Collection, on both Linux and
Windows machines.

Most post-processing and visualization is handled by Paraview
Eigen, gmsh, and paraview can be found, respectively, at:

• https://eigen.tuxfamily.org/index.php?title=Main_Page
• https://gmsh.info/
• https://www.paraview.org/

3.13.1 Remeshing of the Unstructured Interface Mesh

The interface mesh nodes are advected by the velocity fields proceeding from
the finite element solution of the fluid mesh. This velocity fields that promote the
advection are not uniform, and over simulation time, the interface mesh will have
distorted elements, lowering their quality and eventually becoming unusable. In
order to avoid this, a remeshing procedure that maintains the mesh quality while
preserving the geometry and underlying curvature is necessary.

To this end, the PMP library is utilized [68]. It implements the remeshing
algorithm described on [69] and [70]. It reconstructs the mesh using the Adaptive
Isotropic Remeshing technique, which uses a combination of edge collapses and
splits, edge flipping and moving edge positions. The PMP library can be found at:
• http://www.pmp-library.org/

The remeshing algorithm targets an average edge size equal to the starting aver-
age edge size, therefore element size is roughly the same as the initial element size.
The mesh produced however presents an slight loss of volume, which is corrected
by moving the nodes in their normal direction until the volume matches the initial
volume.

3.13.2 Linear System Solver

The linear system of equations presented in 3.69 is symmetric, but not positive
definite, due to the zeros in its main diagonal. This fact restricts the options for the
solver of a linear system of equations. For this work, both the minimum residuals
method [71] and the projection method [72] were chosen to solve the system of
equations.

The minimum residuals can be applied directly, using the linear algebra library
available, while the projection method requires a decomposition of the linear system
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matrix. The selected decomposition in this work is presented bellow

A Q

D 0


vn+1

pn+1

 =

A 0

D (E +DA−1Q)


I A−1Q

0 I


vn+1

pn+1

 (3.94)

where the first matrix on the right side is called the L matrix and the second matrix
on the right side is called the U matrix. Based on this decomposition, one can solve

Avtrial =
M

∆t
vn (3.95)

to find a "trial velocity" value, vtrial. This value then is replaced into the equation
below to find the pressure values

(E +DA−1Q)pn+1 = Dvtrial (3.96)

and finally replace the trial velocity and pressure values into the following equation
to find the velocity values

vn+1 = vtrial + A−1Qpn+1 (3.97)

The evaluation of A−1 is a costly operation, turning the execution of all but the
most simple and unrefined problems unfeasible. To avoid this issue, an approxi-
mation is made to the value of A−1. There are some options to this end, but the
simplest one, adopted in this work is the construction of a matrix Alumped. This is
done by summing the values of each row in the matrix and adding it to its respec-
tive main diagonal position. The end result is a diagonal matrix, which is easily
invertible.
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Chapter 4

Numerical Results

To assert the accuracy of the results offered by the methodology and its nu-
merical implementation, code verification is necessary. The code’s results can be
compared against well-known analytical or numerical test cases in increasing order
of complexity.

This chapter covers the simulation of Hagen-Poiseuille flow and compares it
against the exact solution for steady state conditions, evaluating the accuracy of the
proposed methodology for single-phase flows. The mean curvature values obtained
through the finite element method discretization of the Laplace-Beltrami operator
are also presented, and their accuracy is assessed. Next, the simulations of several
two-phase flow problems are presented, which are compared to existing data to
evaluate the accuracy of the proposed methodology for two-phase flows.

The majority of the tests executed were solved through the projection method,
except for the Poiseuille test and the static droplet test, which were solved directly
using the minimum residuals method. This is because, due to the approximations
made in the projection method, the minimum residuals proved more accurate for
very low ( approximately smaller than 5 ) Reynolds numbers.

The Poiseuille, Static Droplet and Oscillating Droplet tests were executed on a
machine with an Intel Xeon Gold 6348 processor, 2.6GHz, using up to 6 cores. The
remaining tests were executed on a machine with an Intel Xeon Silver 4316, 2.3GHz,
using 2 cores. The code uses approximately 5 gigabytes of RAM per million fluid
mesh nodes on average, with occasional spikes reaching up to 10 gigabytes on some
operations. It is important to note that the code only uses multiple cores on matrix
multiplications and in the solution of the linear system of equations.

A rough estimation of the time taken by each step when executing the simulation
is displayed in fig . 4.1a. The category presented as "Remaining Operations" include
the semi-Lagrangian search, the interface remeshing procedure, the calculation of
surface tension and gravity forces, the output writing. The quantities displayed are
not precise, and the semi-Lagrangian search can sometimes take much more time,
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(a) Projection method.
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10%

(b) Minimum residuals method.

Figure 4.1: Percentage of time spent by simulation procedures for each linear system
solver. LSS stands for "Linear system solver", MA represents "Matrix Assembly"
and RO "Remaining Operations". Using the minimum residuals method is overall
slower than using the projection method.

depending on the problem. When using the minimum residuals method, the solution
of the linear system of equations is much slower than the projection method, taking
up most of simulation time. The time taken by some of the simulations executed
can be observed in table 4.1.

Table 4.1: Time spent by simulations in hours.

Simulation Solver No. Nodes No. Iterations Time (hours)

Static Droplet Min. Residuals 1132910 1492 105.2
Oscillating Droplet Projection 594381 400 3.2

Rising Bubble Projection 1012381 400 21.5
Taylor (sucrose) Projection 709579 1250 32.4

4.1 Single-Phase Simulation

4.1.1 Hagen-Poiseuille

The Hagen-Poiseuille flow is a standard benchmark for fluid flow simulation. The
exact solution is readily obtained by simplifying the Navier-Stokes equations, assum-
ing a fully developed, steady-state flow, with the only non-null velocity component
parallel to the tube, which results in the following equation

∇p = ν∇2u (4.1)

where the solution, which takes a parabolic shape, can be written as
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u = 2uav

(
1− r2

r2max

)
(4.2)

here, u is the velocity in the flow direction, uav is the average velocity in
the flow direction, which on a real flow can be obtained by the mass flow rate, r
is the radius coordinate, starting from the tube center, and rmax is the tube’s radius.

Wall b.c.

Outflow b.c.

Inflow b.c.

Figure 4.2: Finite element simulation parameters for the Hagen-Poiseuille test case.
A cylindrical tube section is displayed, with the inflow region boundary conditions
set as v = w = 0 and u set to the results of a parabolic curve, u = 2− 2r2

025
. The outflow

boundary conditions were p = 0, and at the tube section’s walls, u = v = w = 0
was set.

The analytical velocity profile, assuming an average velocity of uav = 1, and a
diameter d = 1 is plotted in black in fig. 4.3.

The simulation was set as shown in fig. 4.2. The cylindrical tube section has
a diameter of d = 1, and length l = 3. At the inflow, as boundary conditions, the
velocity values were set to u = 1, v = w = 0. At the tube walls, no-slip boundary
conditions were assigned, u = v = w = 0, and at the outlet, outflow boundary
conditions were assigned, p = 0.

A convergence test was performed for this example, with five finite element
meshes, with element edge size hf = 0.28 (1299 nodes, 989 elements), hf = 0.2

(2537 nodes, 1971 elements), hf = 0.14 (7097 nodes, 5691 elements), hf = 0.1

(18520 nodes, 15171 elements) and hf = 0.071 (50574 nodes, 42068 elements), each
h a factor of

√
2 of the previous one. The simulation parameters for all meshes

were time step ∆t = 0.01 and the Reynolds number Re = 1. The simulation was
executed over 20 time steps, achieving steady state. The simulation’s horizontal
velocity profile can be observed in fig. 4.3, plotted against the analytical result.

In fig. 4.4 the velocity in the x direction and pressure fields, obtained from the
most accurate mesh, hf = 0.071 are displayed. In tab. 4.2, the error for each mesh is
presented, and in fig 4.5 a log-log comparison to a linear function is displayed. The
error was calculated by comparing the velocity values in the flow direction for all
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Figure 4.3: Hagen-Poiseuille flow velocity profile. The numerical results are plotted in red,
while the exact results are plotted in black, for the meshes constructed by (a) 1299, (b)
2537, (c) 7097, (d) 18520, and (e) 50574 nodes, respectively.
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(a) Hagen-Poiseuille horizontal velocity profile

(b) Hagen-Poiseuille pressure profile

Figure 4.4: Velocity profile for the x direction, and pressure profile for the Hagen-
Poiseuille test case, with average edge length hf = 0.071 (50574 nodes, 42068 ele-
ments). Both pictures show the plane obtained when the cylinder is cut in half.
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Figure 4.5: Calculated error for horizontal velocity component in the Poiseuille test
case in comparison with a linear function ax. The simulation details for these tests
are detailed in Tab. 4.2.

the simulation nodes to the analytical values, obtained from 4.2. The error formula
utilized is

∥e∥2 =

√(∑
(un − ua)2∑

u2
a

)
(4.3)

where e is the relative error, un is the nodal value for the velocity in the x direction
and ua is the analytical value for the same nodal position.

Table 4.2: Error values for the horizontal (along the tube’s axis) velocity, for the
Hagen-Poiseuille finite element test cases

Edge Length (h) Number of Nodes e

0.28 1299 7.98%
0.2 2537 6.58%
0.14 7097 2.53%
0.1 18520 1.15%

0.071 50574 0.428%

4.1.2 Single-phase Flow in Several Cross Sections

In this section, the results of the simulation of microchannels with multiple cross-
sections are presented. Microchannels are frequently used in heat transfer applica-
tions, and they are crucial to understand their fluid flow characteristics.
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The results for circular, triangular, square, rectangular, and hexagonal cross
sections are presented. The circular cross-section presented in this section differs
from the one shown in section 4.1 by its inflow boundary conditions. The simulation
configurations are displayed in fig. 4.6. All cross sections have the same hydraulic
diameter dh = 1, calculated by inputting dh = 1 in the following equation and
solving for the edge size

dh =
4Ac

p
(4.4)

where Ac is the cross-sectional area, and p is the perimeter, both of them function
of edge size.

All fluid domains for the five tests were set up in the same way. At the entrance,
velocity is set to u = 1 and v = w = 0. At the walls of the channels, no-slip
boundary conditions were assigned, u = v = w = 0, and at the channel’s exit,
outflow boundary conditions are used, p = 0. The channel length is the same for
all cross sections, length = 3. Reynolds number Re = 1 is chosen, as it represents
a typical Reynolds number for a microchannel filled with refrigerant fluid. The
average edge length used is the same for all cases, hf = 0.04, the mesh with circular
cross-section has 197337 nodes and 166584 elements, the mesh with triangular cross-
section has 329569 nodes and 278351 elements, the mesh with square cross-section
has 251361 and 212216 elements, the mesh with rectangular cross-section has 285330
nodes and 240883 elements and the mesh with hexagonal cross sections has 216659
nodes and 182789 elements.

In tab. 4.3, the pressure drop and channel entry length are presented. The
pressure drop was evaluated by calculating the average of all pressure values of the
nodes at the inflow.

When the flow is fully developed, the transversal velocities, v and w are null.
Due to numerical and discretization errors, the velocity values for the transversal
velocities in the present simulation are not actually null. Consequently, the criteria
used for evaluating the entry length was checking at which length the transversal
velocities assumed values smaller than 1% the maximum velocity in the x direction.
The channel entry length is also presented in tab. 4.3.

In fig. 4.7, the horizontal and vertical velocity profiles are displayed. The velocity
profile for the circular section is the same as the one described in chapter 4 for the
Hagen-Poiseuille case. There is a distinct decrease in velocity close to the triangle’s
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(c) Rectangular cross-section simulation parame-
ters

3

1.73

(d) Triangular cross-section simulation parame-
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Wall b.c.
Outflow b.c.
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Figure 4.6: Microchannel simulation parameters for all cross-sections. All cross-sections
have the same hydraulic diameter dh = 1 and channel length l = 3. All polygonal cross-
sections are regular, except for the rectangular one. All simulations were executed with
Re = 1

61



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

z

u

(a) Circular cross-section horizontal ve-
locity profile

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

y

u

(b) Circular cross-section vertical veloc-
ity profile

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

z

u

(c) Triangular cross-section horizontal
velocity profile

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

y

u

(d) Triangular cross-section vertical ve-
locity profile

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

z

u

(e) Square cross section horizontal veloc-
ity profile

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

y

u

(f) Square cross-section vertical velocity
profile

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

z

u

(g) Rectangular cross section horizontal
velocity profile

0 0.2 0.4 0.6
0

0.5

1

1.5

2

y

u

(h) Rectangular cross section vertical ve-
locity profile

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

z

u

(i) Hexagonal cross section horizontal ve-
locity profile

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

y

u

(j) Hexagonal cross section vertical ve-
locity profile

Figure 4.7: Horizontal and vertical velocity profiles for the five different cross sec-
tions. The red line marks the position where the velocity profile was evaluated.
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Table 4.3: Pressure drop and entry length for multiple channel cross sections

Cross Section Pressure Drop Entry Length

Circular 114.6 0.57
Triangular 97.5 0.98

Square 106.0 0.66
Rectangular 113.2 0.94
Hexagonal 111.9 0.61

vertices in the triangular cross-section. The hexagonal and square cross-section
velocity profiles are very close to the circular one.

In fig. 4.8 contour lines describing the velocity in the x direction can be observed,
for all cross sections. The velocity values for each contour line, from outside to inside,
are u = 0.01, u = 0.4, u = 0.8, u = 1.2, u = 1.6, and u = 1.9. The square cross-
section presents a steeper velocity gradient close to the walls, but a less pronounced
gradient at the center. This suggests this section might perform differently from the
circular one when simulating two-phase flow. The more even velocity values at the
center might provide a more stable numerical simulation.

The difference in velocity contours implies that the geometry of the channel
influences the flow significantly, and care must be taken when comparing the results
to experimental data. Even if the fluid properties are the same, the geometric
parameters might differ, causing differences in bubble shapes for example.

4.2 Mean Curvature Evaluation in Arbitrary Ge-

ometries

The fluid interface mean curvature is a crucial component in the calculation of
the surface tension force. The precision of the mean curvature calculation influences
directly the two-phase simulation’s accuracy and stability, therefore, comparing the
values obtained numerically to known values is a procedure to further guarantee
the validity of the two-phase flow simulation. This comparison is presented in this
chapter.

4.2.1 Sphere

For any given sphere, the mean curvature at any point is invariant, given by
κ = 1/2r, where r is the radius. For a sphere of radius r = 0.5, used in all sphere
tests, the mean curvature is equal to κ = 4. In fig. 4.9 one of the meshes used for
the sphere’s mean curvature calculation can be observed. The mesh presented has
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(a) Horizontal velocity contour for the
circular cross section

(b) Horizontal velocity contour for the
triangular cross section

(c) Horizontal velocity contour for the
square cross section

(d) Horizontal velocity contour for the
rectangular cross section

(e) Horizontal velocity contour for the
hexagonal cross section

Figure 4.8: Horizontal velocity contour plot at the outflow. From outside to inside,
the velocities represented are u = 0.01, u = 0.4, u = 0.8, u = 1.2, u = 1.6, and
u = 1.9.
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an average edge length of hi = 0.085, and is constructed with 405 nodes and 806
triangular surface elements.

Table 4.4: Mean curvature (κ) values for the sphere, for meshes of different average
edge lengths. On the table, the error, maximum error, error after area correction,
and maximum error after area correction are displayed.

Average Edge Length (h) e emax eac eacmax

0.16 8.02% 1.79 1.76% 0.620
0.12 4.33% 1.84 1.17% 0.570
0.085 3.41% 1.75 0.762% 0.420
0.06 0.477% 0.404 0.206% 0.177
0.03 1.24% 1.49 0.407% 0.655
0.02 0.795% 1.67 0.284% 0.396

In tab. 4.4, the mean curvature error for several meshes is displayed, along with
the maximum error found in each mesh. The meshes have an average edge length
hi = 0.16 (159 nodes, 313), hi = 0.12 (317 nodes, 630 elements), hi = 0.085 (625
nodes, 1246 elements), hi = 0.06 (1141 nodes, 2277 elements), hi = 0.03 (4308
nodes, 8612 elements) and hi = 0.02 (9500 nodes, 18996 elements). One can note
that refining the mesh reduces both the error and the maximum error, as expected.

On the same table are listed the values for mean curvature error and maximum
error after the area correction proposed in section 3.12.1 is applied. The presented
values show slightly improved accuracy and a markedly reduced maximum error.

The error was calculated according to the following equations

e =

√(∑
(κn − κa)2∑

κ2
a

)
emax =

|κmax − κa|
κa

(4.5)

4.2.2 Cylinder

The cylinder in fig. 4.10 presents a radius r = 0.5 and a length of l = 2. Its
mean curvature values are κ = 2 for the curved surface and κ = 0 for the cylinder’s
bases.

In tab. 4.5, the error and maximum error, discarding the nodes at the edges can
be observed. The error and maximum error after area correction can also be observed
in the same table. The meshes presented have an average edge length hi = 0.16 (251
nodes and 498 elements), hi = 0.12 (431 nodes and 858 elements), hi = 0.085 (798
nodes and 1792 elements), hi = 0.06 (1600 nodes and 3196 elements), hi = 0.03

(6206 nodes and 12408 elements), hi = 0.02 (13853 nodes and 27702 elements).
As the mesh is refined, the error and maximum error are reduced. At the top
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Figure 4.9: The nodal values for mean curvature on a sphere of radius r = 0.5. The
mesh has an average edge length of hi = 0.085 (405 nodes, 806 elements).

and bottom flat surfaces, the mean curvature values were of the order of 10−14,
which can be considered 0 for floating-point numbers in double precision. At the
cylinder’s edges, due to the non-smooth change in geometry, the curvature cannot be
calculated properly, as it should increase towards infinity. The errors were calculated
using equations 4.5.

Table 4.5: Mean curvature (κ) values for the cylinder’s body, for meshes of different
average edge lengths meshes. On the table, the error, maximum error, error after
area correction, and maximum error after area correction are displayed.

Average Edge Length (h) e emax eac eacmax

0.16 2.40% 0.157 2.40% 0.157
0.12 1.45% 0.140 1.45% 0.140
0.085 2.13% 0.130 2.13% 0.130
0.06 1.85% 0.207 1.88% 0.222
0.03 0.786% 0.210 0.781% 0.210
0.02 1.03% 0.219 1.02% 0.192

4.2.3 Torus

The torus is an important case to test curvature values because it can present
negative curvature values. it is important to ensure the code is calculating the
curvature sign correctly. In fig. 4.11 a Torus with major radius R = 0.5 and minor
radius r = 0.4 is displayed. This configuration displays negative curvature values
along the surface close to the center, as can be observed in the figure.
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Figure 4.10: The nodal values for mean curvature on a cylinder, with average edge
length hi = 0.085 (798 nodes and 1792 elements). a) Mesh pictured on a scale pre-
senting the maximum and minimum mean curvature values, showing the increased
mean curvature values at the cylinder’s edges. b) Mesh presented with custom scale,
between κ = 1.9 and κ = 2.1, to reveal different nodal values inside the curved sur-
face.

Table 4.6: Mean curvature (κ) values for the torus, for meshes of different average
edge lengths. On the table, the error, maximum error, error after area correction,
and maximum error after area correction are displayed.

Average Edge Length (h) e emax eac eacmax

0.16 6.35% 2.04 6.31% 2.04
0.12 4.43% 1.31 3.88% 1.31
0.085 3.53% 1.17 3.69% 1.56
0.06 3.34% 1.41 3.34% 1.38
0.03 2.18% 1.08 2.17% 1.17
0.02 2.10% 1.86 2.19% 1.86

In tab. 4.6, the mean curvature error values are presented, with and without
area correction, for meshes with average edge length hi = 0.16 (393 nodes, 786
elements), hi = 0.12 (698 nodes and 1396 elements), hi = 0.085 (1363 nodes and
2726 elements), hi = 0.06 (2697 nodes and 5394 elements), hi = 0.03 (10549 nodes
and 21098 elements), hi = 0.02 (23540 nodes and 47080 elements). Mesh refinement
offers improvement, but the area correction does not offer further enhancement. This
is expected for meshes that do not have many obtuse triangles, but the values confirm
that at worse, the area correction does not decrease mean curvature calculation
accuracy.

When transitioning from an area of positive mean curvature to an area of neg-
ative mean curvature, some mean curvature values were very close to zero. Due to
the division by a number close to zero, the numerical error when calculating the
maximum relative curvature error was very high, masking the real maximum cur-

67



κn

3.8

2

0

−2

−4

−6

−8.20

Figure 4.11: Torus with the major radius R = 0.5 and minor radius r = 0.4. The
mesh average edge length is hi = 0.85, and it has 1363 nodes and 2726 elements. In
the scale, are represented the mean curvature values.

vature error. Therefore, the maximum error displayed in tab. 4.6 does not decrease
with mesh refinement. These error results were calculated using equations 4.5.

4.3 Two-Phase Simulation

4.3.1 Static Droplet

For this test, a droplet of fluid is simulated in less dense, quiescent fluid,
delimited by a spherical interface, in the absence of any external force or velocity
field. No forces except the surface tension due to the interface are applied to the
fluid. If the velocity fields are v = 0 for the whole fluid domain, the Navier-Stokes
equations are reduced to

∇p =
1

We
f (4.6)

The equation above is not the one solved by the numerical simulation, instead
the simulation solves the complete Navier-Stokes equation, however, setting the
boundary conditions to zero velocity and gravity forces to zero should make the
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terms not related to the pressure and surface tension vanish, and therefore the result
should match the values obtained by equation 4.6. This is not, however, the case.
Due to errors related to the mean curvature calculation, element discretization, and
numerical errors, spurious velocities may appear and turn the simulation unstable.
These spurious velocities are clearly undesired and should be minimized as possible.
Lower intensity spurious velocities reflect a more accurate simulation.

2

2

1

2 Wall b.c.

Outflow b.c.

Figure 4.12: Finite element simulation parameters for the Static Droplet test case. A
cubic domain is established, with no inflow conditions. At the walls, u = v = w = 0,
except for the wall at the top, where outflow conditions were set, p = 0. The cubic
domain’s edge has length l = 2. The droplet has diameter d = 1.

For the background mesh, a cubic-shaped domain of width = length = height =

2 (non-dimensional units) was established, with an average edge length hf = 0.71

(131188 nodes, 110464 elements). The interface mesh is a sphere of diameter d = 1.
The fluid properties were set to µ = 1 and ρ = 1 for the droplet, and µ = 0.01 and
ρ = 0.001 for the outside fluid. The Reynolds number and Weber number were set
to We = Re = 1. The simulation was executed over 1200 time steps, ∆t = 0.005,
totaling 6 non-dimensional time units.

For the boundary conditions, at the top wall, outflow boundary conditions were
used, with pressure set to p = 0. The other surfaces of the cube had prescribed
velocity values set to u = v = w = 0. Several meshes were used for the interface, with
average edge length hi = 0.16 (159 nodes, 313), hi = 0.12 (317 nodes, 630 elements),
hi = 0.085 (625 nodes, 1246 elements), hi = 0.06 (1141 nodes, 2277 elements),
hi = 0.03 (4308 nodes, 8612 elements) and hi = 0.02 (9500 nodes, 18996 elements).
The intensity of the spurious velocities, along with the pressure calculation error
can be observed in tab. 4.7.

According to the Young-Laplace equation given below in its non-dimensional
form:
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∆p =
1

We

(
1

R1

+
1

R2

)
(4.7)

where R1 and R2 are the principal radii of curvature, for a droplet of radius r = 0.5,
the pressure difference should be ∆p = 4. The pressure across the simulation domain
can be observed in fig. 4.13. The pressure difference is a close match to the analytical
value.

Table 4.7: Spurious velocity intensity and pressure error for the static droplet test
case. The test case was executed with the fluid mesh edge length hf = 0.071
(131188 nodes, 110464 elements), on a domain of length = width = height = 2.
The simulation appears to degrade when the interface mesh average edge length is
smaller than the fluid mesh average edge length, optimal values are obtained with
close average edge lengths.

Interface Edge (h) vmax ∆perror

0.16 6× 10−1 0.408%
0.12 1.9× 10−2 0.118%
0.085 1.2× 10−2 0.102%
0.06 4× 10−3 0.061%
0.03 4.2× 10−1 18.4%
0.02 366 1223.1%

After observing that the average edge length for the interface mesh of hi = 0.06

gives the best results, the influence of boundary condition configurations was tested.
Five different configurations were used, all of them using the interface mesh with
hi = 0.06, and the fluid mesh with hf = 0.071. The five configurations were:

• Wall boundary conditions at all domain faces and outflow boundary condi-
tions at domain corner points, totaling eight points with outflow conditions
(corners).

• Wall boundary conditions at all domain faces and outflow boundary conditions
at domain edges, totaling twelve edges with outflow conditions (edges).

• Wall boundary conditions at five domain faces and outflow boundary condi-
tions at the remaining domain face (one face).

• Wall boundary conditions at four domain faces and outflow boundary condi-
tions at the remaining two domain faces, opposing each other (two faces).
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Figure 4.13: Static droplet test case pressure graph, from the cubic domain bottom face
center (1, 0, 1) to the domain’s top face center (1, 2, 1). Values obtained from interpolation
of nodal values from the simulation with interface average edge length hi = 0.06.
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• Wall boundary conditions at three domain faces and outflow boundary condi-
tions at the remaining three faces. Each face that is assigned a wall boundary
condition opposes a face with an outflow boundary condition (three faces).

The spurious velocity values for each of the five boundary condition configura-
tions can be observed in tab. 4.8. The configuration which offered the best (lowest)
spurious velocity values was the third one, represented in fig. 4.12

Table 4.8: Spurious velocity intensity for the static droplet test case with different
boundary condition configurations. The test case was executed with the fluid mesh
average edge length of hf = 0.071, average interface mesh length of hi = 0.06, and
on a domain of length = width = height = 2, droplet radius r = 0.5.

Boundary Condition Configuration vmax

Outflow at corners 1× 10−2

Outflow at edges 1× 10−2

Outflow in one face 4× 10−3

Outflow in two faces 2.5× 10−2

Outflow in three faces 3.3× 10−2

Based on tab. 4.8, the best boundary condition configuration is the one adopted
initially, a single face with outflow boundary conditions assigned, and the remaining
faces assigned wall boundary conditions.

In addition to the tests executed with varying interface mesh refinement levels
and different boundary condition configurations, a test altering both the fluid mesh
refinement and the interface refinement was also executed. Seven simulations were
carried out, with fluid mesh refinement, interface mesh refinement and time step
sizes detailed in Tab. 4.9. The results for maximum and average spurious velocities
at the last iteration are displayed in fig. 4.14

Table 4.9: Spurious velocity intensity for the static droplet test case with various
fluid mesh refinement levels. All simulations were executed on the same cubic do-
main of edge size 2, with a number of time steps totalling 5 non-dimensional time
units. Interface mesh and time steps were chosen based on the fluid mesh refinement
levels.

No. of fluid nodes Fluid Mesh (hf ) Interface Edge (hi) Time Step vmax vaverage

15389 0.145 0.15 0.0145 1.40× 10−2 3.36× 10−3

32247 0.115 0.12 0.0115 6.66× 10−3 1.85× 10−3

66641 0.090 0.09 0.0090 4.30× 10−3 1.37× 10−3

131747 0.069 0.07 0.0069 6.57× 10−3 2.09× 10−3

269847 0.055 0.06 0.0055 2.50× 10−3 8.68× 10−4

546853 0.043 0.045 0.0043 1.81× 10−3 3.12× 10−4

1132910 0.0335 0.035 0.00335 1.64× 10−3 4.93× 10−4
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Figure 4.14: Maximum and average velocities are presented for various fluid mesh
refinement levels in comparison with a linear function ax. The simulation details
for these tests are detailed in Tab. 4.9.

4.3.2 Oscillating Droplet

In this test case, a droplet with an ellipsoidal shape suspended in a less dense
fluid is simulated, with no gravity force acting upon the fluids. The droplet starts
with an ellipsoidal shape, and should oscillate around its equilibrium radius, being
damped by viscosity. Over enough time, the droplet should approach a sphere with
radius equal to the equilibrium radius.

The goal of this test is to evaluate the behavior of the surface tension force
comparing the oscillation frequency of the simulated droplet against the known
exact oscillation frequency. If the oscillation frequency matches the exact frequency
closely, it indicates that simulation’s surface tension force is represented accurately.

The exact oscillation frequency is known, it is detailed in [73] and is given by:

d = do + cos(ωt)aoe

−5µint

rρin (4.8)

ω =

√
24

(3ρin + 2ρout)r3We
(4.9)

d is the diameter, do is the equilibrium diameter, ao is the initial perturbation, t is
time, r is the equilibrium radius and ω is the oscillation frequency.

The exact solution assumes the outer fluid’s influence is negligible and second
order effects are small enough to be ignored. To simulate those conditions numeri-
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cally, the outer fluid properties were set to very small values, as to have the outer
fluid influence the results as little as possible. The ellipsoidal droplet’s diameters
were selected to represent a small perturbation while maintaining the same volume
as an spherical droplet of diameter d = 1, which is its equilibrium diameter. The
diameters selected are a = 1.02, b = c = 0.985246.

The test setup is as follows, the domain is the same as the static droplet test
case, a cube of edge size 2, with the droplet positioned at its center. No slip bound-
ary condition was set on all the cube’s walls, and homogeneous Dirichlet pressure
boundary condition was set at the cube’s corners. Inner fluid properties are set to
ρ = 1 and µ = 1 and outer fluid properties set to ρ = 0.0001 and µ = 0.0001.

Two simulations were executed, both of them using the same fluid mesh. This
fluid mesh has non uniform element sizes to save on simulation time. An spherical
region of diameter d = 1.04 located at the fluid mesh center has an average edge
length of hf = 0.02, transitioning smoothly to the rest of the domain with an
average edge length of hf = 0.2. This results on a mesh with 594381 nodes and
511318 tetrahedra.

The first simulation had the Reynolds number set at Re = 1000 and Weber
number at We = 80, an interface mesh with hi = 0.27, composed of 5443 nodes and
10882 triangles. The second simulation had a Reynolds number set at Re = 500,
the same Weber number We = 80 and the interface mesh with hi = 0.28, composed
of 5485 nodes and 10966 triangles. Both simulations were executed over 8 non
dimensional time units and had the interface thickness set to ϵ = 0.6hf = 0.0218259.
The first simulation used a time step of ∆t = 0.032 over 250 time steps and the
second with a time step of ∆t = 0.02 over 400 time steps. No remeshing procedure
was executed for both simulations, but to increase simulation stability, the mesh
filter detailed by [74] was utilized.

The obtained results can be observed in fig. 4.15. The result’s amplitude
presented itself very dependent upon the time step size. Increasing the time
step can increase the amplitude of the results, while decreasing the time step
diminished it for most tests. This test is also sensitive to the interface thickness
choice, affecting the oscillation frequency. Generally, a smaller interface thickness
produces better results, but the optimal interface thickness changes with changes
in other parameters, such as the Reynolds number. Careful selection of parameters
was necessary to obtain the results presented in fig. 4.15. The average error was
calculated for both simulations using the formula given below
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(a) Oscillating Droplet with Re = 1000.
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(b) Oscillating Droplet with Re = 500.

Figure 4.15: Oscillating Droplet results, compared to exact data. In a) the test
was executed with Re = 1000 over 250 time steps and in b) with Re = 500 over
533 time steps, both cases simulating 8 seconds total, with the Weber number set
to We = 80. The fluid mesh has an average length hf = 0.02 at the most refined
region, with 594381 nodes and 511318 tetrahedra. The test in a) presented an error
of eav = 5.94%, while the test in b) has an error of eav = 5.63%.

eav =

∑∣∣∣∣(dn − 1)− (de − 1)

(de − 1)

∣∣∣∣
n

(4.10)

where dn represents the diameter of the droplet in the z direction obtained from the
simulation at the current time step, de is the exact value of the droplet diameter for
the current time step, and n is the total number of time steps. Using the described
formula, an average error of eav = 5.94% was found for the first simulation, presented
in fig. 4.15a, and eav = 5.63% for the second simulation presented in fig. 4.15b.

4.3.3 Rising of an air bubble in a sugar-water solution

This test consists in simulating an spherical bubble inside a quiescent fluid,
subjected to gravity force. The bubble’s fluid is less dense than the outside fluid,
and as the bubble rises, it changes shape. The shape the bubble takes and its
terminal velocity depend upon the flow properties, expressed by its Archimedes and
Eötvös numbers. Both the bubble’s shape and terminal velocity can be compared
to experimental data in order to assess the two-phase simulation accuracy. The
air bubble in an sugar-water solution experiment described in [75] was selected as
reference to compare the simulated bubble shape and terminal velocity.
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The following procedure was adopted to find the non-dimensional velocity used
as reference. For the selected flow, [75] reports a Reynolds number of Re = 7.16,
for a bubble of volume V = 9.3× 10−6m3 at terminal velocity. Replacing the sugar
water solution density ρ = 1350kg/m3, viscosity µ = 1.28kg/ms, and the bubble’s
diameter of D = 0.00261m obtained from its volume into the Reynolds number
equation, a dimensional velocity u = 0.26m/s is obtained. For a gravity driven
flow, the non dimensional velocity is given by:

v∗ =
v√
goD

(4.11)

where v∗ is the non-dimensional velocity, v is the dimensional velocity, D is the
bubble’s diameter and go is the reference gravity acceleration. By replacing the
these values into the described formula, a value for the non-dimensional velocity
v∗ = 0.514 was found.

Gravity

2.5D 8.5D

7D

7DD
Wall b.c.
Outflow b.c.

Figure 4.16: Finite element simulation domain parameters for the Rising Bubble
test case. A prismatic domain is established, with no inflow condition. At the walls,
u = v = w = 0, except for the wall to the right, where outflow condition was set,
p = 0.

The numerical simulation fluid domain can be observed in fig. 4.16. It is a
prismatic channel with a square bottom and the following dimensions, width =

height = 7D and length = 11D. An spherical bubble of diameter d = 1 has
its center positioned at xo = (2.5, 3.5, 3.5). The outer fluid properties are ρ =

µ = 1 while the inner fluid properties are ρ = 0.000892 and µ = 0.0000142. The
Archimedes number is N = 194.88 and the Eötvös number is Eo = 115.662. It
should be noted that the property ratios are higher than 103.

The numerical parameters adopted were a time step of ∆t = 0.015, 400 time
steps executed simulating 6 non-dimensional time units. Several interface thickness
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values were adopted, ϵ = 1.0hf , ϵ = 1.6hf , ϵ = 2.2hf and ϵ = 2.8hf . The fluid mesh
utilized is non uniform, with its more refined region possessing an average edge
length of hf = 0.06, totalling 1012381 nodes and 871124 tetrahedra. The interface
mesh has an average edge length of hi = 0.07, and started with 829 nodes and 1654

triangles.
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Figure 4.17: Finite element simulation results for the air bubble inserted in a sugar-
water solution, compared to experimental results. The fluid property ratios are
ρin/ρout = 0.000892, µin/µout = 0.0000142, and the relevant non-dimensional num-
bers are N = 194.88 and Eo = 115.662. The fluid domain is comprised of 1012381
nodes and 871124 tetrahedra, and the interface mesh 829 nodes and 1654 triangles.
The simulation was executed over 400 time steps of ∆t = 0.015.

The bubble’s terminal velocity obtained from the air sugar-water numerical sim-
ulation is plotted against time in fig. 4.17, along with the terminal velocity measured
by [75]. The shape produced by the simulation at the last iteration can be compared
to the actual bubble in fig. 4.18. Good agreement is observable both in terminal
velocity and bubble shape.

4.3.4 Falling Droplet in Inert Media

The goal of this test is to simulate a droplet of fluid in free fall, and compare
its position and velocity to exact values obtained by the equations of motion. To
achieve this, a droplet of dense fluid is placed in a very large domain, inserted in less
dense and less viscous fluid, to minimize the drag effects acting upon the droplet.
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(a) Frontal view of Air
Sugar-Water bubble at
iter = 400.

(b) Transversal cut of Air
Sugar-Water bubble at
iter = 400.

(c) Picture of Air Sugar-
Water bubble

Figure 4.18: In (a), the simulated bubble shape can be observed. In (b), a contour
of the middle of the bubble is represented, where the dimple at the bottom can be
observed. In (c), a picture of the actual bubble is displayed.

The simulation parameters are as follows, a droplet of diameter d = 1 with its
center positioned at xo = (2.5, 3.5, 3.5), inside a domain of dimensions width =

height = 7D and length = 11D, the same set up as in fig. 4.16, but with gravity
pointing in the positive x direction. The inner fluid properties are µin = ρin = 1 and
the outer fluid properties are µout = ρout = 0.0001. Archimedes and Eötvös numbers
are N = 1000000 and Eo = 1, and a time step of dt = 0.01 was used over 150 time
steps, simulating 1.5 non-dimensional time units. A non-uniform mesh was used,
with 1012381 nodes, and a refinement of hf = 0.06 at its most refined section (the
center, along the expected droplet path). The uniform interface mesh has 625 nodes,
with a constant refinement level of hi = 0.08. The selected interface thickness was
ϵ = 1.4hf . Non-dimensional gravity acceleration of g = 1m/s2 is utilized.

The results of the droplet’s position and velocity can be observed in fig. 4.19.
The results present an exact match up until t = 1. At the end of the simulation,
close to t = 1.5, some minor discrepancy can be observed, which can be attributed
to increasing drag forces acting upon the droplet.

4.3.5 Rising of an air Taylor bubble

In this section we present the results obtained by simulating an elongated Taylor
bubble in a circular channel. In this type of flow the channel’s walls influence the
bubble’s shape, and the liquid film thickness, the distance between the channel’s
walls to the bubble, is an important parameter. Therefore the results of this simu-
lation will be compared against the terminal velocity for a Taylor bubble presented
by [76], and a correlation for liquid film thickness obtained from lubrication theory
shown in [77].

The domain for the numerical simulation is presented in fig. 4.20. It is a cylinder
of diameter d = 1, and length l = 11. Inside this domain, an approximately bullet-
shaped bubble is placed with its end positioned at 2 diameters from the base of the
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Figure 4.19: In (a), the position of the falling droplet is compared against the exact
values. In (b), the droplet’s velocity is displayed against the precise values derived
from the equations of motion. Gravity points in the positive x direction. The noise
observed in (b) can be attributed to numerical errors arising from the computational
methods used in velocity calculations.
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Figure 4.20: Finite element simulation domain parameters for the Taylor bubble
test case. A cylindrical domain is established, with no inflow condition. At the
cylinder’s base and walls, u = v = w = 0. At the top outflow condition was set,
p = 0.

cylinder, centered along the cylinder’s axis. The same setup is used for two different
fluids, a sucrose solution and an ethylene glycol solution.

In the sucrose solution simulation the outer fluid properties are ρ = µ = 1, while
the inner fluid properties are ρ = 0.00101024 and µ = 0.00323. The Archimedes
number is N = 800000 and the Eötvös number is Eo = 40.

In the ethylene glycol solution simulation the outer fluid properties are ρ = µ =

1, while the inner fluid properties are ρ = 0.0010638 and µ = 0.0009171. The
Archimedes number is N = 107439 and the Eötvös number is Eo = 53.

For both simulations, a time step of ∆t = 0.008 was adopted, 1250 time steps
were executed simulating 10 non-dimensional time units. Four interface thickness
were tested, ϵ = 1.0hf , ϵ = 1.6hf , ϵ = 2.2hf and ϵ = 2.8hf . The fluid mesh utilized
has the same refinement over the whole domain, with an average edge length of
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Figure 4.21: Finite element simulation results for the air bubble inserted in a sucrose
solution, compared to experimental results. The fluid property ratios are ρin/ρout =
0.00101024, µin/µout = 0.00323, and the relevant non-dimensional numbers are N =
800000 and Eo = 40. The fluid domain is comprised of 709579 nodes and 600375
tetrahedra, and the interface mesh 4070 nodes and 8136 triangles. The simulation
was executed over 1250 time steps of ∆t = 0.008.

hf = 0.04, totalling 709579 nodes and 600375 tetrahedra. The interface mesh has
an average edge length of hi = 0.04, starting with 4070 nodes and 8136 triangles.

In fig. 4.21 and fig. 4.22, the results for the sucrose solution and ethylene glycol
solutions can be observed, respectively, along with the values for film thickness for
each test. The results are plotted against the bubbles’ terminal velocity obtained
experimentally in [76], and in the same figures, the liquid film thickness is plotted
against the values obtained by the equation described by [77] presented below:

δ3 = 1.5Fr
Mo0.25

Eo0.75
(0.5− δ) (4.12)

where Fr, Mo and Eo are the non dimensional numbers presented previously. The
equation was solved numerically using Newton’s method. Both fluids simulated show
results with reasonable agreement to experimental data, both in terminal velocity
and liquid film thickness. It is apparent that the interface thickness is not a major
influence in these results, where the gravity force is more significant than the surface
tension force. The reported velocity and film thickness values at the start of the
simulation show a major disagreement to exact values due to the bubble’s shape
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Figure 4.22: Finite element simulation results for the air bubble inserted in ethylene
glycol, compared to experimental results. The fluid property ratios are ρin/ρout =
0.0010638, µin/µout = 0.0009171, and the relevant non-dimensional numbers are
N = 107439.7 and Eo = 53. The fluid domain is comprised of 709579 nodes and
600375 tetrahedra, and the interface mesh 4070 nodes and 8136 triangles. The
simulation was executed over 1250 time steps of ∆t = 0.008.

adjustment. A significant modification of the bubble shape happens before it turns
stable, and that is reflected in the presented results.

4.3.6 Taylor Bubble in Complex Geometry

Using the different geometry proposed in the previous section, several Taylor
bubble simulations in different channel cross-sections were executed. A square, tri-
angular, hexagonal and ellipsoidal cross-sections were selected, each with the same
hydraulic diameter as a circular cross-section of diameter d = 1. The square cross-
section features an edge length of l = 1, while the hexagonal cross-section has a side
length of l = 0.577, the triangular cross-section, which is an equilateral triangle,
possesses a side length of l = 1.73, and the ellipsoidal cross-section has a minor
diameter of a = 0.842 and a major diameter of b = 1.262.

The fluids selected were air and ethylene glycol, with the same properties and
simulation parameters as described previously section, and air and tellus oil, an
hydraulic fluid, which possesses the following simulation parameters, the outer fluid
properties are ρ = µ = 1, while the inner fluid properties are ρ = 0.00137037 and
µ = 0.000350962. The Archimedes number is N = 11094 and the Eötvös number
is Eo = 70. The time step selected was ∆t = 0.01 over 1000 time steps and the
interface thickness selected was ϵ = 1.2hf .
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The setup is the same as represented in fig. 4.20, with the same bubble shape and
length and same channel dimensions, the only difference is the channel cross-section,
which follows the geometries in fig. 4.6.

Figure 4.23 presents the bubbles’ velocities for each cross-section of the ethylene
glycol simulation. The simulation for the triangular cross-section did not complete
successfully. In the triangular simulation, the bubble tends to undergo breakup dur-
ing the shape adjustment phase, a phenomenon not accounted for in the simulation.
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Figure 4.23: Terminal velocity comparison for different cross-sections with the same
hydraulic diameter. Ethylene Glycol is the chosen fluid.

Figure 4.24 presents the bubbles’ velocities for each of the cross-sections pre-
sented in fig.4.6, for the tellus oil fluid. The more viscous nature of the tellus oil
restricted bubble deformation during the initial shape adjustment phase, and all
simulations finished successfully.

Geometric changes in the air bubbles can be observed in simulations with both
fluids, but the less viscous ethylene glycol presents more dramatic changes, which
can be observed in fig. 4.25. The bubbles take a very smoothed shape of the channel
they are in. The geometry changes are barely noticeable on the hexagonal cross-
section, but they are significant on the square and ellipsoidal channel cross-sections.
The bubble skirts are more accentuated in regions close to the corners of the fluid
domain, an effect very noticeable on the square and elliptic channels.

4.3.7 Gas Bubble Interaction in a Shear Flow

In this section, the results for multiple bubbles rising in fluid with varying
Reynolds and Weber numbers are presented. All tests executed and presented in this
section employed the fluid properties of carbon dioxide (CO2) for the gas phase and
crude-oil for the liquid phase. Carbon dioxide’s specific mass is ρin = 0.1 kg/m3, and
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Figure 4.24: Terminal velocity comparison for different cross-sections with the same
hydraulic diameter. Tellus oil is the chosen fluid.

its viscosity is µin = 0.1 kg/ms. The crude-oil properties can vary over a large range,
depending on the oil components. It can be a lighter-than-water, low-viscosity fluid
or a heavy, almost-solid substance. In this work, the following average properties
were considered: specific mass of ρout = 910 kg/m3 and viscosity of µout = 12.85

kg/ms. The surface tension coefficient also varies with the oil type, but an average
value of σ = 17 N/m is considered.

The simulation setup can be observed in fig. 4.26. A vertical circular channel
is represented, with a non-dimensional diameter d = 1 and length l = 8. At one
end, an inflow with a uniform non-dimensional velocity v = 1 is set, and at the
other end, an outflow where pressure p = 0 is positioned. The walls along the
channel have no slip boundary conditions. Two bubbles are positioned inside the
channel. The bubble at the center, labeled the free bubble, has its center positioned
at p1 = (1, 0, 0), while the bubble at the side, labeled the shear bubble, has its center
positioned at p2 = (1.3, 0,−0.31). Both bubbles are initially spherical in shape and
have a diameter of D1 = D2 = 0.3. For reference, the center of the channel’s bottom
is positioned at O = (0, 0, 0).

In relation to the initial positioning of the bubbles, our objective was to examine
the influence of a bubble’s wake on nearby bubbles within a circular channel. The
positions of the bubbles within the channel were deliberately selected so that they
have different velocities, enabling one bubble to overtake the other. Additionally,
the diameters were determined to ensure that, if the bubbles maintain a straight
trajectory along the x-axis, they would closely approach each other at the moment
of passing.

By inputting the fluid properties specified in the previous paragraph into the
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(a) Square cross-section
frontal view

(b) Hexagonal cross-section
frontal view

(c) Ellipsis cross-section
frontal view

(d) Square cross-section lat-
eral view

(e) Hexagonal cross-section
lateral view

(f) Ellipsis cross-section lat-
eral view

Figure 4.25: In (a), (b) and (c), the frontal view for the bubbles in the square,
hexagonal and ellipsoidal cross-sections are displayed. It’s observable that the bub-
bles take an approximate, smooth shape of the channel they are in. (d), (e) and
(f) display the bubbles’ lateral view. From these views, one can notice the skirt
formation, that matches the positions of the channel’s corners.

Morton number equation, three pairs of Reynolds and Weber numbers were selected
to be simulated. The first one is We = 10 and Re = 64, the second one is We = 20

and Re = 107, and the third one is We = 40 and Re = 180. All three cases used
Fr = 1. Simulations with those parameters were executed with and without gravity
forces, totaling six scenarios. All simulations were conducted over 300 time steps
of dt = 0.01, resulting in t = 3 non-dimensional time units. Using the properties
presented previously, the following non-dimensional fluid properties were inputted,
the outer fluid properties are µout = ρout = 1, and the inner fluid properties are
µin = 0.00155642 and ρin = 0.00078022. The selected interface thickness was ϵ =

1hf . The fluid domain has 1218138 nodes, with an average edge length of hf = 0.3,
and the interface mesh for both bubbles had 760 nodes, with hi = 0.3.

Figure 4.27 presents the results of the simulation executed with Weber and
Reynolds We = 10 and Re = 64 at t = 0.2, t = 0.9, t = 1.4, and t = 1.9. For
the given parameters, there is very little difference between the results obtained
with and without gravity forces. In the simulation executed with gravity, the bub-
bles travel further ahead in the channel, but the shape and position relative to one
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Figure 4.26: Simulation setup for the composed geometry, the representation of
the continuous and dispersed phases, and the boundary conditions. The channel
is oriented vertically from left to right but depicted in a rotated configuration for
convenience to fit within the paper sheet. As a result, the gravity field acts in the
opposite direction, from right to left. At the inflow, a prescribed velocity boundary
condition is assigned, vx = 1, vy = 0, vz = 0. At the outflow, an homogeneous
Dirichlet pressure boundary condition is assigned, p = 0. At the cylinder walls, the
no-slip boundary condition is set, vx = vy = vz = 0.

another are very similar, as can be seen in fig. 4.28. The bubble near the wall
undergoes some deformation due to the shear forces caused by the velocity gradient.
There is very little influence on the free-bubble trajectory due to the shear bubble.
After the free bubble passes the shear bubble, it is carried by the flow normally.

Figure 4.29 presents the results of the simulation executed with the Reynolds
number Re = 107 and the Weber number We = 20, with no gravity forces, while
fig. 4.30 shows the results with the same parameters but with gravity forces active.
The times presented are t = 0.2, t = 1.2, t = 1.8, and t = 2.4. The results for the
bubble simulation with no gravity forces are very similar to those of the previous
simulations with Re = 64 and We = 10.

However, when gravity forces are active, there is some variation. The shear
bubble suffers significantly more deformation and approaches the free bubble at
the moment the free bubble passes it. The free bubble interacts with the shear
bubble, changing shape as it moves along the flow, and the shear bubble appears
to be trapped in the free bubble’s wake, increasing its velocity compared to the
simulation with no gravity forces active and approaching the center of the channel.
This effect can be observed in fig. 4.31, along with the velocity fields that originate
it.

Figure 4.32 presents the results of the simulation executed with the Reynolds
number Re = 180 and the Weber number We = 40, with no gravity forces, while
fig. 4.33 shows the results with the same parameters but with gravity forces active.
The times presented are t = 0.2, t = 1.2, t = 1.8, and t = 2.4. The simulation with
no gravity presents similar results to those of other simulations without gravity,
with slightly more deformation for both bubbles due to lower viscosity and lower
surface tension forces. The simulation executed with gravity forces turned on offers
some interesting results. The shear bubble undergoes the most deformation, being
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Figure 4.27: In a), b), c) and d), the simulation with parameters Re = 64 and
We = 10 is displayed at times t = 0.2, t = 0.9, t = 1.4, and t = 1.9. Vx represents
the axial velocity component. Gravity forces were disabled, and the simulation was
executed over 300 time steps of dt = 0.01.
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(a) Re = 64, We = 10, at time t = 0.2, gravity enabled
0 0.7 1.4 2.1V x

Gravityxz

(b) Re = 64, We = 10, at time t = 0.9, gravity enabled
0 0.7 1.4 2.1V x

Gravityxz

(c) Re = 64, We = 10, at time t = 1.4, gravity enabled
0 0.7 1.4 2.1V x

Gravityxz

(d) Re = 64, We = 10, at time t = 1.9, gravity enabled

Figure 4.28: In a), b), c) and d), the simulation with parameters Re = 64 and
We = 10 is displayed at times t = 0.2, t = 0.9, t = 1.4, and t = 1.9. Vx represents
the axial velocity component. Gravity forces, pointing to the left, were enabled, and
the simulation was executed over 300 time steps of dt = 0.01.

87



0 0.7 1.4 2.1V x

xz

(a) Re = 107, We = 20, at time t = 0.2
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(b) Re = 107, We = 20, at time t = 1.2
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(d) Re = 107, We = 20, at time t = 2.4

Figure 4.29: In a), b), c) and d), the simulation with parameters Re = 107 and
We = 20 is displayed at times t = 0.2, t = 1.2, t = 1.8, and t = 2.4. Vx represents
the axial velocity component. Gravity forces were disabled, and the simulation was
executed over 300 time steps of dt = 0.01.
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(a) Re = 107, We = 20, at time t = 0.2, gravity enabled
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(b) Re = 107, We = 20, at time t = 1.2, gravity enabled
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Gravityxz

(c) Re = 107, We = 20, at time t = 1.8, gravity enabled
0 0.7 1.4 2.1V x

Gravityxz

(d) Re = 107, We = 20, at time t = 2.4, gravity enabled

Figure 4.30: In a), b), c) and d), the simulation with parameters Re = 107 and
We = 20 is displayed at times t = 0.2, t = 1.2, t = 1.8, and t = 2.4. Vx represents
the axial velocity component. Gravity forces, pointing to the left, were active, and
the simulation was executed over 300 time steps of dt = 0.01.

stretched toward the center, moving into the free bubble’s trajectory, and causing a
contact. The current two-phase bubble-merging model was disabled for all simula-
tions, since coalescence is not the aim of the present research, but it can be argued
that it could occur under these conditions.

Figure 4.34 presents the change in the z-coordinate for both bubbles in all six
simulations. In all simulations, some influence can be seen in the plot, but the
impact in scenarios with We = 10 and We = 20 is not as significant. The re-
maining simulations, with We = 40, show some relevant influence on both bubbles’
trajectories, especially the simulations with gravity forces.

In fig. 4.35, the x-direction velocity component for both bubbles is presented.
It can be inferred from the plot that the free bubble is slowed down by the shear
bubble’s presence, up until the point where the free bubble overtakes it. It is also
evidenced that the shear bubble accelerates after the free bubble’s passage, especially
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(b) Re = 107, We = 20, at
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Figure 4.31: Detail near the bubbles presenting the vertical velocity fields for the
simulation with parameters Re = 107 and We = 20 with gravity forces enabled
at times a) t = 0.2, b) t = 1.2, and c) t = 1.8. The bubbles are displayed in a
wire frame overlaid on the velocity fields. It is possible to notice the increase in the
velocity values inside the shear bubble, pushing it toward the channel center.

in the simulations where gravity effects are enabled.

4.3.8 Complex Geometries

In fig. 4.36, additional complex geometries are presented to execute the two-
phase flow simulation. These geometries are meant to challenge the simulation and
represent possible real-world scenarios.

All simulations were executed with the same fluid properties, ρ = µ = 1, while
the bubble fluid properties are ρ = 0.000892 and µ = 0.0000142, with gravity
disabled. The same time step was selected for all simulations, with a time step
of ∆t = 0.01, over a maximum of 400 time steps, however only the expanding
channel simulation completed all time steps. The converging channel simulation
was interrupted by the bubble reaching the fluid domain’s end, and the curved
channel simulation was interrupted near the end by a bubble breakup. The same
interface thickness ϵ = 1.5hf was used for all three simulations.

The converging channel simulation has 1744069 nodes, and was executed with
Reynolds number Re = 100 and Weber number We = 10. The expanding channel
simulation domain has 1720930 nodes and was executed with Re = 10 and We =

100, and the curved channel simulation has 2963087 nodes, and was executed with
Re = 10 and We = 10.

The results of the converging channel simulation can be observed in fig. 4.37.
It initiates with the bubble gradually adopting a mushroom shape as it advances
toward the channel constriction. Upon reaching the constriction, the bubble under-
goes a rapid change in shape, which occurs very rapidly compared to other observed
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Figure 4.32: In a), b), c) and d), the simulation with parameters Re = 180 and
We = 40 is displayed at times t = 0.2, t = 1.6, t = 2.2, and t = 2.8. Vx represents
the axial velocity component. Gravity forces were disabled, and the simulation was
executed over 300 time steps of dt = 0.01.

phenomena. In just a few time steps, the triangular shape of the bubble transforms;
its top takes on a Taylor bubble shape, while the middle undergoes constriction until
it passes through the constriction section assuming the Taylor shape completely.

In the expanding channel simulation presented in fig. 4.38, initially, the bubble
swiftly assumes the form of a Taylor bubble and advances towards the expansion
section. As the bubble traverses the expansion, it swells, becomes curved, and then
the lower portion of the bubble recedes, resulting in a bell-shaped configuration as
it exits the channel expansion.

Finally, in the curved channel simulation displayed in fig. 4.39, the bubble begins
to take on a mushroom shape, but the velocity fields promptly deform it, pulling its
top towards the curve. The bubble starts to hollow out, undergoing a drastic change
in shape. As it ascends towards the top of the channel, it leaves a trailing portion
behind, gradually distancing itself from it until separation occurs, concluding the
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(a) Re = 180, We = 40, at time t = 0.2, gravity enabled
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Figure 4.33: In a), b), c) and d), the simulation with parameters Re = 180 and
We = 40 is displayed at times t = 0.2, t = 1.6, t = 2.2, and t = 2.8. Vx represents
the axial velocity component. Gravity forces, pointing to the left, were active, and
the simulation was executed over 300 time steps of dt = 0.01. Bubble coalescence
may occur under these conditions.

simulation due to the unsupported breakup.
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the free bubble
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Figure 4.34: In this figure, the change in the z-coordinate of the center-of-mass
position is depicted for a) the free bubble and b) the shear bubble as a measure of
the influence of the bubbles on each other’s trajectory. It can be noticed, especially
in the simulations with Reynolds number Re = 180 and Weber number We = 40,
that the shear bubble moves toward the channel’s center, and the free bubble is
displaced by it.
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Figure 4.35: This figure presents the velocity in the x-direction of a) the free bubble
and b) the shear bubble. The moment the free bubble overtakes the shear bubble
happens at t = 0.9, t = 1.2, and t = 1.6 in the simulations with Weber numbers
We = 10, We = 20, and We = 40.
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(a) Flow through a converging channel.

1 2

3.5 1 3.5

(b) Flow through an expanding channel.
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Figure 4.36: Complex Geometries. In a) and c), the diameter of the bubble is
db = 1. In b), the bubble’s diameter is db = 0.8. The bubble center is positioned at
the channel’s central axis, at position x = 1 in a), b) and c).
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(a) t = 0.20 (b) t = 0.60

(c) t = 0.70 (d) t = 0.75

(e) t = 0.8 (f) t = 0.85

(g) t = 0.90 (h) t = 0.92

(i) t = 0.94 (j) t = 0.96

Figure 4.37: Transversal cut of the converging channel simulation results displaying
the bubble. In this simulation, channel diameter changes from d = 2 to d = 1 over
a length of l = 0.5. The bubble’s starting diameter is db = 1
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Figure 4.38: Transversal cut of the expanding channel simulation results displaying
the bubble. In this simulation, channel diameter changes from d = 1 to d = 2 over
a length of l = 0.5. The bubble’s starting diameter is db = 0.8
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Figure 4.39: Transversal cut of the curved channel simulation results displaying the
bubble. The bubble’s starting diameter is db = 1. A bubble breakup happens at the
end of the simulation, displayed in i).
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Chapter 5

Conclusion

5.1 Discussion

The goal of the present work was to develop a methodology for studying three-
dimensional two-phase flow in complex geometries using the Finite Element method
and a Front-Tracking approach to represent the fluid interface. The Navier-Stokes
equations were discretized through the one-fluid approach on unstructured meshes.
The semi-Lagrangian method was employed to represent the material derivative,
and the Laplace-Beltrami operator was utilized to calculate curvature. Applying
the aforementioned methodology, a series of single-phase and two-phase tests were
conducted, and the simulations’ behavior was subsequently analyzed and described.

The single-phase Hagen-Poiseuille test case demonstrated both stability and ac-
curacy, exhibiting convergence toward exact results with mesh refinement. The
results of the single-phase microchannel simulations provided valuable insights into
optimal microchannel geometries. Circular, square, and hexagonal cross sections
yielded predominantly symmetric velocity fields, with circular contours near the
center. Notably, the square cross-section displayed a less steep velocity gradient
close to the center, suggesting potential advantages for two-phase simulations.

The two-phase static droplet test exhibited low-intensity spurious velocities, con-
sistent with values reported in the literature. Maximum values occurred at the sim-
ulation’s outset, when there is some adjustment to the droplet’s position. Following
the initial time steps, there is a significant decrease in the intensity of spurious ve-
locities, reducing by nearly an order of magnitude. This is due to the difference
between the initial mesh shape and the numerical code balance between surface
tension and pressure. Tests where the fluid mesh was fixed and the interface mesh
refined demonstrated a trend ranging between linear and quadratic as the inter-
face mesh is refined, until reaching a threshold where the interface mesh refinement
approximates the fluid mesh refinement. Beyond this point, further increases in
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interface refinement escalated spurious velocities, adversely affecting results. The
static droplet test conducted with different fluid and interface meshes revealed an
approximately linear relationship between the number of fluid mesh nodes and the
intensity of spurious velocities.

The oscillating droplet test case yielded accurate results in both amplitude and
oscillation frequency. Nevertheless, it proved to be the most challenging test among
all. The accuracy of this test relies heavily on an precise representation of the
surface tension force, necessitating a highly refined fluid mesh for satisfactory out-
comes. The selected interface thickness influences the oscillation frequency, with
smaller thicknesses yielding more accurate results. One possible explanation for
this phenomenon is that increasing the interface thickness leads to a larger droplet
radius, directly affecting the frequency. Another notable observation is that the
chosen time step affects the oscillation amplitude, requiring some trial and error to
find the optimal value. Additionally, there is some mesh dependency, where cer-
tain interface meshes produce better results than others, even when all other factors
remain constant. Fortunately, this dependency diminishes as mesh refinement in-
creases, ensuring that different interface meshes with similar refinement levels yield
comparable results.

The results from both the static droplet test and the rising bubble test demon-
strate that when the average edge length of the bubble mesh is smaller than that of
the fluid mesh, the simulation becomes unstable. While refining the interface mesh
does improve curvature calculation and simulation accuracy, this enhancement ap-
pears limited by the fluid mesh refinement.

The isolated rising bubble tests exhibited excellent agreement with experimental
data. Despite variations in time step and interface thickness, this test proved to
be less sensitive to these parameters compared to the oscillating droplet test. The
gravitational force involved in this simulation exert far greater influence than the
surface tension force, lessening the influence of these parameters.

The Taylor bubble tests demonstrated agreement with experimental data, albeit
to a lesser extent than the isolated rising bubble test case. In this scenario, the
interface thickness played a more significant role, likely due to the proximity to the
walls of the channel.

Finally, the simulation of various complex geometries provided interesting in-
sights into bubble behavior in these specific situations, allowing for informed engi-
neering decisions when designing microchannels or heat transfer devices.

The optimal value for the interface thickness, ϵ, was determined through testing.
For most simulations executed, the optimal value seem to be close to ϵ = 1.5hf . The
exception to this was the oscillating droplet test, where lower values provided more
accurate oscillation frequency results. Care must also be taken when selecting the ϵ
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value in fluid meshes where hf varies over the domain, depending on how the value
of hf is input or calculated in the simulation.

Overall, the method demonstrates both accuracy and stability. Its implementa-
tion is relatively straightforward, and it eliminates time-consuming remeshing pro-
cedures for the fluid mesh present in other front-tracking approaches.

5.2 Suggestions

Further research is recommended to enhance the exchange of information be-
tween the interface mesh and the fluid mesh. This improvement is expected to yield
better-behaved surface tension dominant tests, such as the oscillating droplet, and
to a lesser degree, the static droplet.

The implementation of second-order finite elements is also anticipated to enhance
the method’s accuracy within the same simulation time frame. Although individ-
ually more expensive, second-order elements are expected to significantly improve
accuracy, especially considering that the central mini element nodes, which consti-
tute the majority of nodes present in the fluid mesh, do not contribute to a more
accurate simulation. It should be noted however, that the limitations observed in
the curvature calculation might limit accuracy gains.

Lastly, to form a comprehensive computational fluid dynamics package, the sim-
ulation of heat and mass transfer can be introduced. While heat transfer simulation
is relatively straightforward, the mass transfer technique, though present in similar
front-tracking techniques, needs to be adapted to the current uncoupled method.
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