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Simulações numéricas de escoamento bifásico intermitente são importantes para 

acompanhar e prever o comportamento desse padrão de escoamento ao longo de uma 

tubulação. Alguns trabalhos antecessores provaram que o modelo de dois fluidos 

unidimensional e transiente é capaz de capturar golfadas automaticamente, apenas como 

resultado da dinâmica do escoamento. Neste trabalho, duas abordagens para o modelo de 

dois fluidos em combinação com diferentes métodos numéricos são implementadas. Os 

modelos matemáticos propostos possuem cinco e sete equações, são incondicionalmente 

hiperbólicos e são avaliados para simular problemas benchmark. O modelo numérico que 

melhor reproduz os problemas benchmarks é utilizado para simular casos de escoamento 

intermitente através do método de captura de golfadas. Resultados obtidos com a 

modelagem numérica são comparados com caso da literatura e com dados experimentais 

obtidos através de uma campanha experimental que também é parte deste trabalho. Os 

resultados demonstram que o modelo numérico é bastante promissor, apresentando boa 

concordância para algumas características de golfadas, como frequência e velocidade 

translacional, embora possivelmente ajustes sejam necessários a fim de contemplar 

efeitos que são intrinsicamente tridimensionais e influenciam no escoamento. 
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 Numerical simulations of intermittent two-phase flow are important to monitor and 

predict the behavior of this flow pattern along a pipe. Some previous works have proved 

that the transient one-dimensional two-fluid model is capable of capturing slugs 

automatically, just as a result of the flow dynamics. In this work, two approaches of the 

two-fluid model in combination with different numerical methods are implemented. The 

proposed mathematical models have five and seven equations, are unconditionally 

hyperbolic and are evaluated to simulate benchmark problems. The numerical model that 

best reproduces the benchmark problems is used to simulate cases of intermittent flow 

through the slug capturing approach. Results obtained with the numerical model are 

compared with a literature case and with experimental data obtained through an 

experimental campaign that is also part of this work. The results demonstrate that the 

numerical model is promising, presenting good agreement for some slug characteristics, 

such as slug frequency and translational velocity, although adjustments to contemplate 

effects that are intrinsically three-dimensional and that have an impact on the flow may 

be needed. 
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1.  Introduction 
 

1.1  Motivation 
 

Gas-liquid two-phase flows are present in many engineering applications that are 

particularly important to the world energy generation. The performance of those 

processes is related to the correct characterization of the engineering parameters of the 

flow and in the prediction of possible failures during their operation. Two-phase flow 

engineering problems can be encountered, for instance, in the design of flow separators, 

in thermal systems of nuclear reactors and in the entire oil and gas production chain. 

 In the oil and gas field, two-phase flow pipelines transport the mixture of oil and 

natural gas from platforms to the processing units. Along those pipelines, the flow can be 

characterized by different flow patterns, depending on gas and liquid flow rates, pipeline 

inclination and diameter, and fluids properties. For horizontal and slightly inclined 

pipelines, the flow patterns can be classified as stratified, intermittent, annular, or 

dispersed bubble, as presented by Taitel and Dukler (1976).  

The intermittent flow is denoted by the alternate passage of a bubble of gas and a 

liquid slug. The gas bubble may carry droplets with it and the liquid slug can be aerated, 

containing dispersion of small gas bubbles entrained, or not. According to Issa and Kempf 

(2003), the slugs are formed due to natural growth of hydrodynamic instabilities or liquid 

accumulation originated by the pressure and gravitational forces. Consequently, the 

waves that grow at the interface between the fluids fill the pipe section with liquid 

blocking the passage of gas and travel along the line.  

The intermittent flow is not always desired in the oil and gas industry, since its 

intermittent behavior allows the flow rates to oscillate in such a way that can impact the 

equipment that catch the flow in its destination. This severe unsteady flow in the pipelines 

can compromise the efficiency of the production and the entire system. In addition, it can 

cause the appearance of corrosion and pipeline fatigue, as pointed out by Fan (2017). 

This work is primarily motivated by the demand for reliable numerical tools to assist 

the oil and gas industries when dealing with transient two-phase flow situations. The 

prediction of two-phase flows has always been an important issue to be addressed in the 

design stage of gas-liquid pipelines and during their operation. The intermittent flow 

pattern occurs in a wide range of liquid and gas flowrates, and it has fundamentally 
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complex dynamics with unsteady behavior. The challenging prediction of the slug flow 

characteristics has motivated the development of several works in the open literature. 

However, the problem is still far from having a complete numerical model that can 

accurately predict the unsteady flow variables and their space distribution along the pipe, 

as well as the main slug characteristics, such as slug length, slug frequency, translational 

velocity and pressure drop. 

Therefore, it is crucial to predict the onset and evolution of such flow pattern along 

the line aiming to decrease costs and avoid unnecessary waste of the resources. Since the 

formation of an intermittent flow has a non-steady nature, a transient numerical 

simulation that can represent the physics of such flow will give a more accurate and 

complete information regarding its behavior. 

 

1.2 Present Contribution 
 

The numerical simulation of slug flows can be tackled in many ways, including the 

slug capturing approach, where the onset and evolution of the slug flow is numerically 

calculated. The analysis of the problem from a numerical viewpoint involves the use of a 

transient one-dimensional mathematical model comprised of a set of governing nonlinear 

partial differential equations that is able to describe the physics of the flow combined with 

a robust numerical technique that will accurately solve the system of equations.  

 The contribution of this work lies on the development of a numerical model that can 

predict the intermittent flow in horizontal and inclined pipelines through slug capturing 

numerical simulations. This study contributes to the area of two-fluid-model slug 

simulation since it offers two numerical models, comprised of two formulations – the 

5E2P and the unprecedented 7E2P models – combined with the AUSM-family of 

numerical methods and the approximate Riemann solver Roe. This work presents a 

systematic study of the implemented models and methods in order to analyze their 

behavior when reproducing benchmark problems solutions and a slug capturing 

simulation that is described in the literature. The numerical results indicate that the 

combination of the 5E2P model with the AUSMDV method provides the most promising 

numerical model to simulate the intermittent flow. The capability of the numerical model 

in predicting the slug flow is also verified when the simulated results are compared with 

experimental data acquired during an experimental campaign carried out throughout this 
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work. This comparison includes a wide range of flow scenarios, varying from horizontal 

to 30° of inclination, and for low and high viscosity fluids. 

 

1.3 Objectives 
 

The general objective of this work is to develop a numerical model based on the 

transient one-dimensional two-fluid model to simulate the onset and evolution of the 

intermittent flow pattern using the approach referred to in the literature as slug capturing. 

The model is a combination of a one-dimensional mathematical model with a robust and 

accurate numerical method that must allow the unsteady fields of the flow variables and 

the main slug characteristics, such as slug frequency, translational velocity, pressure drop, 

to be calculated. 

Specifically, this work has four objectives. The first is to implement two different 

mathematical approaches of the transient gas-liquid one-dimensional two-fluid model. 

The first mathematical model has five partial differential equations with two pressures 

(one for each phase), the 5E2P model, which is comprised of one mass and one 

momentum equation for each phase (gas and liquid), in addition to one evolution equation 

for the void fraction. The other model has seven equations and two pressures (one for 

each phase), the 7E2P model, and assumes the presence of two additional phases, bubbles 

in the liquid phase and droplets in the gas phase. Therefore, the seven-equation model has 

fours mass conservation equations, one for each phase, two momentum equations, one 

for the mixture gas and droplets and another for liquid and bubbles. The last equation is 

the evolution of the gas and droplets volume fractions. Those two approaches are herein 

tested and the differences between them are addressed. 

The second specific objective of this work is to test and compare different numerical 

methods to simulate the slug capturing. Numerical methods are analyzed, such as the 

approximate Riemann solver of Roe and the AUSM-type of methods, and the best scheme 

is selected based on studies performed with benchmark problems well described in the 

literature. Advantages and disadvantages are pointed out in order to select the most 

applicable method for the desired application. 

This work also aims to obtain slug flow data by performing an experimental campaign 

at North Campus’s experimental facilities at the University of Tulsa, in Tulsa, Oklahoma, 

USA. In this experimental campaign, two experimental facilities are used to run two-

phase tests. The 4-inch facility is supplied with water and air and can be inclined, while 
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the 2-inch facility is filled up with synthetic oil and air and is in the horizontal condition. 

This part of the work was encouraged by CAPES under the PDSE program.  

The last objective of this work is to compare the numerical results with the 

experimental data to verify if the proposed numerical model accurately predicts the 

desired flow dynamics and main slug characteristics.  

 

1.4  Structure of the Work 
 

In chapter 2, a literature review is presented, showing publications that were relevant 

to the development of this work. 

Chapter 3 is dedicated to describing the mathematical models that are used in the 

numerical simulations of this study. 

In chapter 4, the numerical methods are presented in detail, as well as the 

discretization techniques. 

In chapter 5, the experimental campaign is detailed, showing the experimental 

facilities schematics and instrumentation. 

Chapter 6 is devoted to present all the results obtained with the benchmark problems 

study encompassing the mathematical models and numerical methods. In addition, an 

accuracy check of the selected numerical method is performed. 

 The slug capturing results and the comparison with experiments are presented in 

chapter 7. 

Finally, the conclusions of the work are presented with comments and future work 

recommendations in chapter 8. 

At the end of the text, Appendix A presents more details regarding the Roe scheme. 

Appendix B shows the single-phase tests that were run at the experimental facilities and 

Appendix C brings the uncertainty analysis.   
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2. Literature Review 
 

In this chapter, a literature review based on articles and publications that were relevant 

in the development of this work are presented. In addition, important information 

regarding two-phase flow is also described. 

 

2.1 Two-Phase Flow Patterns 
 

In gas-liquid two-phase flow in pipelines, the simultaneous transport of gas and liquid 

phases presents remarkable physical phenomena characterized by a variety of flow 

patterns that can be formed due to the development a gas-liquid interface. Consequently, 

the two-phase flow in a pipe is much more complex than its single-phase counterpart and 

is categorized according to its topological features and flow parameters. According to 

Taitel and Dukler (1976), in horizontal and slightly inclined pipelines, two-phase flow 

can be classified as stratified flow, dispersed bubble flow, annular flow and intermittent 

flow, as illustrated in Fig.1. 

 

 

Figure 1: Two-phase flow patterns for horizontal and slightly inclined pipelines. (A) 

Stratified Flow, (B) Dispersed Bubble Flow, (C) Annular Flow and (D) Intermittent 

Flow. 

 

In horizontal pipelines, at low flow rates, the gas phase spontaneously moves on top 

of the liquid film, configurating the stratified flow pattern. An increase of gas flow rate 

at constant liquid flow rate causes the stratified flow to form small waves at the interface. 

As the liquid speeds up, these waves can grow and bridge the top of the pipe and the 

intermittent flow appears. For higher gas flow rates, the annular flow appears with the 

liquid phase tending to form a ring around the pipe wall. Finally, at higher liquid flow 
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rates, the dispersed bubble flow may occur in the pipe, in which the gas bubbles tend to 

concentrate in the upper part of the pipe due to buoyancy.  

Since classification and description of the flow distributions into different patterns are 

subjective by visual observation, some authors, such as Shoham (2006) subcategorize the 

intermittent flow into slug and elongated bubble flow. When the liquid slug body is almost 

free of gas bubbles, the plug flow or elongated bubble flow is achieved, whereas the slug 

flow is found at higher gas velocities in the presence of entrained gas bubbles. There is 

also a pseudo-slug flow, in which there are large surges of liquid that do not fill the whole 

pipe cross section, as detailed by Lin and Hanratty (1987). 

 

2.2 Average Procedure of the Governing Equations 
 

The usage of the complete set of three dimensional Navier-Stokes equations to 

characterize two-phase flow in long pipes is still not practical due to the time constraint 

and the computational power that is demanded. The presence of a deformable interface 

between the phases constitutes an additional and complex matter, as pointed out by Ishii 

and Hibiki (2006). To mitigate this difficulty, averaging procedures are used in the 

equations, turning the problem into the one-dimensional context and, thus, reducing the 

computational cost involved in solving those equations (Drew and Passman, 1999).  

From a physical viewpoint, especially when transient events become relevant, the 

one-dimensional formulation is the most suitable approach since long pipelines with 

lengths far greater than their diameters are considered. In the work of Ishii and Hibiki 

(2006), the authors show that one-dimensional equations can be obtained using an area-

averaging procedure derived from the full three-dimensional Navier-Stokes equations. 

This one-dimensional approach is extensively used to model such flows. 

 

2.3 Two-Phase Flow Mathematical Models 
 

In the two-phase flow literature, there are three main frameworks to approach the 

modeling of one-dimensional two-phase flows:  homogeneous equilibrium model (HEM), 

drift-flux model (DFM) and the two-fluid model (TFM).  

The first model, HEM, is the one with the less complex system of equations, which is 

similar to a single-phase formulation. This model consists of one mass, one momentum 

and one energy equations. According to this formulation, gas and liquid phases are 
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considered as a mixture where the physical properties of the dominant phase prevail. 

Moreover, in this model, it is assumed that the velocity, pressure and temperature are 

equal for both phases. Clerc (2000) uses the HEM model to simulate two-phase flow and 

concludes that this is not the best model when it is desired to contemplate kinetic or 

thermodynamic non-equilibrium effects, where more equations are required. 

The second model, the DFM, uses a single pressure and a single temperature for the 

gas and liquid phases. However, the velocities of the fluids are assumed to be different. 

This mathematical model is comprised of one momentum equation that relates the 

differences in the phase velocities, two equations of conservation of mass and one 

equation of conservation of energy for the mixture. Supplementary relations are required 

to obtain the necessary information for determining the motion of each phase separately. 

These relations are often referred as the drift velocity equations. Some authors, such as 

Masella et al. (1998), Ishii and Hibiki (2003) and Santim and Rosa (2015) used this model 

to simulate two-phase flows in pipes. In the work of Munkejord (2005), the author 

analyzes the behavior of different numerical methods when solving benchmark problems 

concerning two-phase isothermal flows formulated using the DFM and the TFM. The 

DFM showed to be a simpler model and more easily derived if compared to the TFM, due 

to its reduced number of equations. However, it is important to state that this model is not 

suitable to perform slug capturing simulations, since the interface terms are suppressed 

from the momentum equations. 

The third model, the TFM, is known as the most robust model for two-phase flows 

since both phases are described independently which means that each phase has its own 

kinematics and therefore separate mass and momentum equations. For that reasons, the 

TFM is the one used in the present work. Some authors in the literature, such as Fabre 

and Peresson (1989) and Munkejord (2005), to name a few, also used this type of 

modeling in their work as a better way to describe the physics of the flow. 

 

2.4 Different Approaches of the Two-Fluid Model (TFM) 
 

The TFM can be written in many ways, depending on the desired application of the 

model and on the flow hypotheses that are assumed in the solution. The most commonly 

used assumption for this model is the isothermal flow, in which thermal effects are not 

considered and the energy equation(s) is (are) neglected.  In the work of Ransom and 

Hicks (1984), the authors used a particular nomenclature to distinguish the types of 
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modeling for the TFM. Therefore, following this nomenclature, the mathematical model 

that disregards the energy equation(s) has two mass and two momentum equations, one 

for each phase, and is referred as 4E1P for short, in allusion to four equations and one 

common pressure for the phases.  The 4E1P model has been used by many authors such 

as Issa and Kempf (2003), Omgba-Essama (2004), Figueiredo et al. (2017) for different 

applications.  

Whenever thermal effects between the phases and/or the environment are relevant, 

the 4E1P model is no longer suitable and the energy equation(s) must be included. The 

simplest way is to write only one energy equation for both phases as a mixture. This 

strategy admits as a basic assumption that the phases are always in thermal equilibrium 

and, thus, share the same temperature. The energy equation written for the mixture was 

used by Abbaspour et al. (2010), Sondermann (2016) and is implemented in the 

commercial software OLGA (Schlumberger). When there is no thermal equilibrium 

between the phases and the phases temperatures are different, two energy equations are 

necessary, as presented by Simões et al. (2014). 

According to Prosperetti (2007), Figueiredo et al. (2017), Azizi et al. (2018) and 

Sondermann et al. (2019), the above-mentioned models are conditionally hyperbolic, 

which means that they may render complex eigenvalues that turn the model ill-posed and, 

consequently, non-physically representative. The mathematical model’s capability of 

representing the correct physics of the flow is directly related to well-posedness of the 

problems. 

Ransom and Hicks (1984), investigating hyperbolic two-pressure models for two-

phase flow, proposed the isothermal five-equation and a non-isothermal eight-equation 

models, with two local distinct pressures, one for each phase. Later, Baer and Nunziato 

(1986), motivated by the deflagration-to-detonation transition problem in two-phase 

mixtures and inspired by Ransom and Hicks (1984), suggested a seven-equation model. 

The five-equation model, called 5E2P for short, consists of one mass and one momentum 

equation for each phase, in addition to one evolution equation for the void fraction, which 

is assumed to be advected throughout the domain by an interfacial velocity. The eight-

equation model has the same 5E2P model’s equations with the addition of one energy 

equation for each phase and one transverse momentum balance equation. Besides, the 

seven-equation model have the same mass, momentum and energy equations for each 

phase and the void fraction evolution equation, but it does not take into account the 

transverse momentum balance equation. The two-pressure models have been widely used 
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by several different researchers, such as Saurel and Abgrall (1999), Munkejord (2007), 

Munkejord et al. (2009) and Furfaro and Saurel (2015). The great advantage of the 5E2P 

model, over the 4E1P model, in particular, is the analytical and always real eigenvalues, 

derived from a fifth-order polynomial equation. The 5E2P model is unconditionally 

hyperbolic, which means that the model is well-posed and able to provide results that are 

representative of the physics of the flow.  

The TFM includes even more sophisticated models, by adding more equations to the 

existing ones. For instance, if gas bubbles and/or liquid droplets phases are introduced in 

the physical modeling, equations to characterize the dynamics of the new phases must be 

also accounted for. It is worth mentioning that the hyperbolicity of the models must be 

checked every time a new equation is inserted in the formulation. 

 

2.5 Previous Work on Intermittent Flow 
  

Several studies on two-phase flow, especially in intermittent flow pattern, have been 

conducted over the years and the most important ones are reported in this section.  

 

2.5.1 Hydrodynamic Slug Formation Mechanism  

 

Slug flow appears in horizontal, inclined and also vertical pipes for a large span of 

liquid and gas flow rates. In horizontal and nearly horizontal pipes, the slug flow can be 

generated from stratified flow by either the natural growth of hydrodynamic instabilities 

or liquid accumulation at the valleys of irregular pipelines. According to Issa and Kempf 

(2003), the specific transition generally occurs due to the continuous growth of interface 

instabilities, which develop into small-amplitude long waves. In such cases, small 

perturbations of short waves that increase naturally may grow into larger waves on the 

surface of the liquid. These instabilities are calculated by means of the Kelvin-Helmholtz 

instability theory, which has been frequently used to determine whether a smooth 

stratified flow is stable or unstable to generate slug flow. 

Barnea and Taitel (1993, 1994) used stability analysis for two-phase flow to determine 

the inviscid (IKH – Inviscid Kelvin Helmholtz) and viscous (VKH – Viscous Kelvin 

Helmholtz) conditions in which perturbation of the equilibrium generates disturbance that 

grow into waves that evolve into slug flow. This relation is expressed as 

 



10 

 

(𝑢𝐺 − 𝑢𝐿) < 𝐾√
(𝜌𝐿𝛼𝐺 + 𝜌𝐺𝛼𝐿)

𝜌𝐿 − 𝜌𝐺
𝜌𝐿𝜌𝐺

𝑔 cos 𝜃
𝐴

𝑑𝐴𝐿
𝑑ℎ𝐿

 , 

 

 

(2.1) 

where for the inviscid case (IKH) K=1 and for the viscous case (VKH), K is expressed as 

 

𝐾 =
√
1 −

(𝐶𝑉 − 𝐶𝐼𝑉)2

𝜌𝐿 − 𝜌𝐺
𝜌𝐿
𝛼𝐿
+
𝜌𝐺
𝛼𝐺

𝑔 cos 𝜃
𝐴
𝑑𝐴𝐿
𝑑ℎ𝐿

, 

 

(2.2) 

 

where 𝜃 is the pipeline inclination angle with the horizontal direction and 𝐶𝑉 and 𝐶𝐼𝑉 are 

the critical wave velocity for the inviscid and viscous analysis, respectively. The variable   

𝜌𝑘 is the density, 𝛼𝑘 represents the volume fraction of each phase k, liquid or gas, A is the 

cross-section area and ℎ𝐿 is the liquid height. According to Issa and Kempf (2003) if Eq. 

(2.1) is not satisfied (right-hand side, RHS, greater than LHS, left-hand side) for the IKH 

analysis, the model loses hyperbolicty. If Eq. (2.1) is satisfied for the VKH analysis (LHS 

lower than RHS) the flow is stable and the stratified flow exists in the pipe. On the other 

hand, if Eq. (2.1) is not satisfied, (LHS greater than RHS) for the VKH analysis, the flow 

is unstable and the transition from stratified to intermittent flow occurs.  

The slug flow can also be formed due to the pipeline inclination which may result in 

retardation followed by accumulation of liquid, for example in “V” section pipes. This is 

known as terrain-slugging and an extreme situation can occur when a cyclic production 

of long liquid slugs is formed, the so-called severe-slugging. According to Taitel et al. 

(1990) and Nieckele et al. (2013) the length of a severe slug can overtake the pipeline.  

There are three classical approaches in intermittent flow modeling: the unit cell, the 

slug tracking and the slug capturing. The unit cell approach was thoroughly discussed in 

the works of Dukler and Hubbard (1975), Taitel and Barnea (1990), Zhang et al. (2003), 

Gonçalves et al. (2018) and Soedarmo et al. (2018). The unit cell approach assumes fully 

developed pipe flow and the intermittent two-phase flow is considered to be a succession 

of identical unit cells composed by a liquid slug and a gas bubble, treating the inherently 

transient slug pattern in a steady-state manner.  

When more rigorous modeling approach is needed to incorporate details of the slug 

characteristics, the slug tracking and capturing techniques are recommended. In the slug 
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tracking approach, the slug is tracked in an individual way along the pipeline, in which 

the location of each slug front and bubble nose is calculated based on the conservation 

laws. This methodology follows a Lagrangian approach in which every slug and bubble 

are considered as distinct objects that are distributed along the line. This can result in an 

increase in computational efficiency if compared to the slug capturing. Some authors, 

such as Nydal and Barnejee (1996) and Rosa et al. (2015), carried out slug-tracking 

simulations for two-phase flows in a pipe. Within this technique it is necessary to set slug 

conditions at the beginning of the simulation or where the flow faces a different pipeline 

inclination. It means that the slugs are not generated automatically from the dynamic of 

the flow, or from the stratified pattern. Other authors used a hybrid version of a slug 

tracking, incorporating a slug capturing approach into a tracking model to generate the 

slug from the stratified flow through the growth of instabilities. (Renault, 2007; Kjeldby 

et al., 2013; Almeida et al., 2017). The commercial software OLGA (Schlumberger) also 

has an approach that is similar to the hybrid one, in which the Eulerian OLGA code and 

a slug tracking option are integrated.  

Lastly, the slug capturing is based on a Eulerian frame and the slugs are formed due 

to the dynamics of the flow, in which the initiation and development of the intermittent 

pattern are a result of the solution of the governing equations instead of being determined 

by imposing specific relationships. Many authors developed numerical algorithms based 

on the two-fluid model (TFM) that are able to capture the evolution of waves in the gas-

liquid interface and the transition from one flow pattern to another. 

 

2.5.2 Slug Capturing Approach Using the TFM  

 

Issa and Kempf (2003) were particularly interested in investigating the capability of 

the two-fluid model in predicting the formation and development of the slug flow due to 

its importance in practical applications. In this work, the authors were able to verify that 

the model can simulate the natural growth of instabilities, which generated the slug flow 

and the intermittent behavior of this flow pattern. The stratified flow, slug flow and the 

transition were modeled with one-dimensional conservation equations of mass and 

momentum. Issa and Kempf (2003) assumed an isothermal flow, disregarding the energy 

equation(s), and the remaining equations were discretized on a staggered grid using a 

finite volume method where the upwind difference scheme was applied to the spatial 

derivatives and the Euler implicit scheme for the temporal integration. The authors used 
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an artificial strategy to avoid a singularity in the gas momentum in the slug body, in which 

the liquid holdup reaches unity, and the void fraction becomes zero. It is worth mentioning 

that the control of the gas velocity in the slug body is essential to obtain well-formed 

slugs. This strategy consisted of setting the gas velocity to zero in the slug body region. 

This work is considered an important initial point in the slug capturing simulation 

performed with the two-fluid model. It emphasized the capability of the one-dimensional 

two-fluid model in predicting the growth of instabilities at the gas-liquid interface that 

initiated the slug flow formation. 

Subsequently, Bonizzi and Issa (2003) also performed studies on the transient one-

dimensional two-fluid model to simulate slug flow regime using the slug capturing 

approach. However, the gas entrainment effect was added to the model. The objectives of 

this work were to implement and validate the numerical model to simulate the 

phenomenon of gas bubble entrainment in two-phase flow. The entrainment model was 

based on the solution of the continuity and momentum equations for the gas phase, mass 

and momentum equations for the gas-liquid mixture and the scalar transport equation for 

the determination of the gas bubble fraction in the slug body. The most important 

contribution of this work was the formulation and implementation of a model that 

accounts for the gas entrainment in the slug flow. The gas bubble velocity is calculated 

according to a relation that balances the pressure and drag forces on a steady motion 

bubble. According to the authors, the results obtained with the aerated slug flow were 

compared to experiments with good accuracy. The gas-entrainment effect was most felt 

in the case of a V-section pipeline, while the horizontal cases had marginal differences if 

compared to unaerated simulations. 

Based on Issa and Kempf (2003), Ortega Malca (2004), also performed slug capturing 

simulations. In order to analyze the stability and the hyperbolicity of the 4E1P model, two 

different ways of writing the governing equations of the flow were considered: the 

conservative and the non-conservative forms. The non-conservative formulation was used 

to try to minimize the problems derived from the singularity present in the gas momentum 

equation when gas phase vanishes, and the liquid slug fulfills the entire section of the 

pipe. Moreover, different ways of discretization of the conservation equations and the 

velocity-pressure coupling were tested, such as PISO and PRIMER algorithms. With the 

results obtained, the author emphasized some weaknesses in the model such as the gas 

momentum equation issue in the slug body and the use of empirical correlations for the 
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calculation of the friction factors that could influence the results and sensibility of the 

model.  

In the work of Nieckele et al. (2013), the authors also studied the onset and 

development of the slug flow in a horizontal pipe solving the transient one-dimensional 

two-fluid model. The set of equations is comprised by two mass and momentum 

equations, one for each phase, and neglected the energy equation(s) under the hypothesis 

of isothermal flow. The conservation equations were discretized with the finite volume 

method where the convective terms were solved with the upwind approximation while 

the temporal integration was solved with the fully implicit Euler scheme. It is worth 

mentioning that the authors followed Issa and Kempf’s (2003) recommendation, setting 

the gas phase velocity to zero when that phase vanishes. In addition, a statistical analysis 

was performed in order to help the interpretation of the results, by using probability 

density functions (PDF) of the experimental and numerical data, confirming, once again, 

the capability of the model in predicting the slug flow. 

Ansari and Daramizadeh (2012) presented a numerical strategy for modeling the 

dynamics and the transient behavior of the slug initialization and development in 

horizontal pipes. In this study, the authors used the hyperbolic five-equation two-fluid 

model, the 5E2P. This model has two mass and two momentum equations, one for each 

phase, and one equation for the evolution of the void fraction. In the referred work, the 

numerical method AUSMDV in association with a MUSCL-HANCOCK reconstruction 

was used, achieving a second order space accuracy. The authors run numerical tests for 

benchmark cases as validation of the code, such as shock tube and water faucet problems, 

showing that the numerical model behaved well in the presence of discontinuities. 

Regarding the slug flow simulations, the results were compared to experiments performed 

with a rectangular cross-section and presented good agreement revealing physical 

characteristics of the slug flow regime. Even though the strategy to avoid singularity in 

the gas momentum equation was not mentioned, this work was important to show that the 

numerical methodology used is capable to predict the physics of different slug flow cases 

with good accuracy, even without requiring the solution of the associated Riemann 

problem or any previous knowledge of the eigenstructure of the model. 

Another work that conducted slug capturing numerical simulations was Ferrari et al. 

(2017), also using the 5E2P model. A finite volume discretization of the hyperbolic 

equations and the use of the appropriate closure relations resulted in a numerical code 

developed to simulate two-phase air-water flows in pipelines. The system of equations 
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was solved explicitly using a finite volume method based on the approximate Riemann 

solver of Roe. This work adopted similar procedure as Issa and Kempf (2003) when the 

liquid volume fraction grows and tends to unity and, therefore, the gas volume fraction 

becomes zero, avoiding the solution of the gas momentum equation. However, differently 

from Issa and Kempf (2003), Ferrari et al. (2017) did not arbitrarily set the gas velocity 

to zero, stating that the abrupt modification of the gas velocity value introduces numerical 

oscillations. Thus, they defined a function that gradually approaches the gas velocity to 

zero in regions where the gas volume fraction falls in a certain range. The results obtained 

were divided into two parts: validation of the code and numerical method’s robustness 

through benchmark problems and the slug capturing simulation itself. In the first part, the 

authors used the water faucet, the large relative velocity shock tube, the separation and 

the oscillating manometer problems. All of them presented good results when compared 

to the respective analytical solutions or reference results in the literature. For the slug 

capturing simulations, the code was successfully used to simulate the slug growth and 

development from the stratified flow in a horizontal pipeline and presented a grid 

independence when a grid refinement study was conducted. The work was able to show 

that the two-pressure model, the 5E2P, is a good option to simulate the slug flow without 

being concerned about the hyperbolicity of the model.  

Recently, Ferrari et al. (2019) extended the previous work, Ferrari et al. (2017), that 

had been tested only for air-water flows in horizontal pipes. In the most recent work, the 

same numerical was adopted and validated for unconventional scenarios. First, they tested 

the slug capturing technique with the pair air and high viscosity oil and then, air and non-

Newtonian fluids. In addition, different complex geometries were also studied. This work 

reinforced the capability of this numerical model to simulate the intermittent flow, not 

only for air-water flows, but also, for unconventional scenarios that are present in the 

daily activities of the oil and gas industries. 

 The present work contributes to the area of two-fluid-model by offering two 

mathematical models, the 5E2P and the 7E2P, in association with different numerical 

methods, the approximate Riemann solver of Roe and AUSM-type methods, to perform 

slug capturing simulations. Moreover, different strategies to avoid the singularity in the 

gas momentum equation are implemented, such as instantaneous velocity relaxation and 

a separate closure equation to model the gas phase in the slug body. This work also 

presents a more complete study, encompassing various slug flow scenarios that includes 

low and high viscosity fluids, as well as, horizontal and up to 30° of pipeline inclination. 
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3. Mathematical Model 
 

In this chapter, the governing equations of the gas-liquid two-fluid models used to 

simulate the intermittent flow are presented, as well as the closure relations of the 

proposed models.  

 

3.1 Hypotheses for the Two-Fluid Model (TFM) 
 

 The one-dimensional two-phase flow formulation adopted in this work is subject to 

some simplifications to better represent the physics of the flow, in addition to the 

assumptions that are intrinsic to the TFM itself. These hypotheses are described as 

follows:  

• the cross-section area of the pipeline is constant; 

• there is no mass transfer between the phases, nor chemical reaction is considered; 

• the molecular and turbulent diffusive viscous effects in the axial direction are 

neglected; 

• fluids properties, such as viscosities, are considered as constant; 

• an isothermal flow is assumed, which means that the energy equation(s) is(are) 

neglected. 

 

3.2 Two-Phase Flow Governing Equations 
 

 In the present work, two different approaches of the TFM, that represent two ways of 

writing the governing equations, are used. The first one is the 5E2P model and the second, 

is the herein called 7E2P. The 5E2P model, as mentioned in Chapter 2, is comprised of 

two mass and two momentum equations, one for each phase, and one equation for the 

evolution of the void fraction. The new model, the 7E2P, is proposed in this work as an 

extension of the 5E2P that encompasses the presence of dispersed bubbles and droplets 

phases in the formulation, adding more physics to the problem.  

 It is well known that the two-fluid model has some limitations regarding the 

disappearance of one of the phases during the development of the flow, for instance, when 

the liquid slug is formed, and the gas phase vanishes. When this happens, the void fraction 

becomes zero in the slug body region, creating a singularity in the gas momentum 
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equation. Thus, it is necessary to guarantee that the phase volume fractions keep their 

values greater than zero and lower than one, which makes the problem artificially 

controlled. The 7E2P model was first idealized in this work as an attempt to enrich the 

physics in the problem and avoid this artificial control, by keeping the concentration of 

bubbles and droplets sufficiently small to automatically guarantee that the liquid and gas 

phases would not cease to exist, even if it is coexisting in another phase. In other words, 

the inclusion of bubbles in the liquid phase and droplets in the gas phase would eliminate 

the occurrence of the singularity. However, even with a better physical modeling, there is 

no mathematical guarantee that these extra equations will be enough to produce values of 

the liquid and gas volume fractions within the correct range during the numerical 

calculation. 

 In this context, bubbles are dispersed in the liquid phase and droplets are dispersed in 

the gas phase for the 7E2P model. Both ways of representing the flow, with the 5E2P or 

the 7E2P, comprise, a priori, different pressures for the main phases and strictly 

hyperbolic mathematical models. One of the main concerns in using the two-fluid model 

is related to the loss of hyperbolicity and, consequently, an ill-posed model that do not 

represent the flow correctly. As already mentioned, the 4E1P model, comprised of two 

mass and two momentum equations, one for each phase that share the same pressure, is 

conditionally hyperbolic. Tests performed in the present work with the 4E1P model for 

slug capturing simulations returned complex eigenvalues, leading to a non-hyperbolic 

scenario. That was the main reason for not using this model. The 5E2P and the 7E2P 

models do not have this problem, since they are unconditionally hyperbolic with 

analytical eigenvalues that are always real. 

  

3.2.1 5E2P Model 

 

 The 5E2P model is composed of the partial differential conservation equations listed 

below. 

• Evolution of the gas volume fraction 

 

𝜕

𝜕𝑡
(𝛼𝐺) + 𝑢𝐼

𝜕

𝜕𝑥
(𝛼𝐺) = 𝑟𝑃(𝑝𝐺 − 𝑝𝐿). 

 

(3.1) 

 

• Equations of conservation of mass for the gas and liquid phases 
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𝜕

𝜕𝑡
(𝜌𝐺𝛼𝐺) +

𝜕

𝜕𝑥
(𝜌𝐺𝛼𝐺𝑢𝐺) = 0, 

 

(3.2) 

 

𝜕

𝜕𝑡
(𝜌𝐿𝛼𝐿) +

𝜕

𝜕𝑥
(𝜌𝐿𝛼𝐿𝑢𝐿) = 0. 

 

(3.3) 

  

 In the above equations, 𝛼𝑘 is the volume fraction, 𝑢𝑘 is the velocity, 𝜌𝑘 is the fluid 

density of each phase k, where k can assume G or L, related to the phase gas or liquid, 

respectively. The variable 𝑢𝐼 stands for the interfacial velocity, which corresponds to the 

velocity of the center of mass of the two-fluid mixture. In Eq. (3.1), 𝑟𝑃 is the relaxation 

parameter associated to the time needed for the phases to achieve the local 

thermodynamic equilibrium, and consequently, the same pressure value. 

• Equations of conservation of momentum for the gas and liquid phases 

 

 

𝜕(𝜌𝐺𝛼𝐺𝑢𝐺)

𝜕𝑡
+
𝜕(𝜌𝐺𝛼𝐺𝑢𝐺

2 + 𝛼𝐺𝑝𝐺)

𝜕𝑥

= (𝑝𝐺 − 𝛥𝑝𝐼,𝐺)
𝜕𝛼𝐺
𝜕𝑥

+ 𝐵𝑓𝐺 + 𝑇𝐼 + 𝑇𝐺𝑤, 

 

(3.4) 

 

𝜕(𝜌𝐿𝛼𝐿𝑢𝐿)

𝜕𝑡
+
𝜕(𝜌𝐿𝛼𝐿𝑢𝐿

2 + 𝛼𝐿𝑝𝐿)

𝜕𝑥
= (𝑝𝐿 − 𝛥𝑝𝐼,𝐿)

𝜕𝛼𝐿
𝜕𝑥

+ 𝐵𝑓𝐿 − 𝑇𝐼 + 𝑇𝐿𝑤, 

 

(3.5) 

 

where 𝑝𝑘 is the fluid pressure, 𝐵𝑓𝑘 stands for the body forces, 𝑇𝐼 is the interfacial drag 

force per unit volume and 𝑇𝑘𝑤 is the drag force between the fluid and the wall per unit 

volume, for each phase k. The term 𝛥𝑝𝐼,𝑘 is the pressure correction term. All these terms 

are detailed in the closure relation’s section in this chapter. 

 The liquid volume fraction, 𝛼𝐿, and the gas volume fraction, 𝛼𝐺 , also known as the 

holdup and the void fraction, respectively, are defined as the ratio of the volume occupied 

by each phase to the total cylindrical volume of fluid taken as a reference. However, for 

long pipelines, a common approach is to integrate the three-dimensional equations of 

motion over a cross-section of the pipe to obtain a suitable one-dimensional two-fluid 

model that is comprised of an area-averaged set of governing equations (Ishii and Hibiki, 

2006). Therefore, the variables become averaged quantities based on the cross-section 

area of the pipe, A, and the volume fractions reduce to a ratio of areas, according to 
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𝛼𝐿 ≡
𝐴𝐿

𝐴𝐿 + 𝐴𝐺
, 

(3.6) 

 

𝛼𝐺 ≡
𝐴𝐺

𝐴𝐿 + 𝐴𝐺
, 

(3.7) 

 

where 𝐴𝑘 is the area occupied by the phase k, that can be interpreted as L, for the liquid 

phase, or G, for the gas phase. The volume fractions are also subject to the compatibility 

condition of 

 

𝛼𝐿 + 𝛼𝐺 = 1. (3.8) 

 

3.2.2 7E2P Model 

 

 The 7E2P model is composed of the system of partial differential conservation 

equations as follows. 

• Evolution of the gas and droplets volume fractions 

 

𝜕

𝜕𝑡
(𝛼𝐺 + 𝛼𝐷) + 𝑢𝐼

𝜕

𝜕𝑥
(𝛼𝐺 + 𝛼𝐷) = 𝑟𝑃(𝑝𝐺 − 𝑝𝐿). 

 

(3.9) 

 

• Equations of conservation of mass for the gas, liquid, droplets, and bubbles 
 

𝜕

𝜕𝑡
(𝜌𝐺𝛼𝐺) +

𝜕

𝜕𝑥
(𝜌𝐺𝛼𝐺𝑢𝐺) = 0, 

 

(3.10) 

 

𝜕

𝜕𝑡
(𝜌𝐿𝛼𝐿) +

𝜕

𝜕𝑥
(𝜌𝐿𝛼𝐿𝑢𝐿) = 0, 

 

(3.11) 

 

𝜕

𝜕𝑡
(𝜌𝐷𝛼𝐷) +

𝜕

𝜕𝑥
(𝜌𝐷𝛼𝐷𝑢𝐷) = 0, 

 

(3.12) 

 

𝜕

𝜕𝑡
(𝜌𝐵𝛼𝐵) +

𝜕

𝜕𝑥
(𝜌𝐵𝛼𝐵𝑢𝐵) = 0. 

 

(3.13) 

 

 In the above equations, 𝛼𝑘 is the volume fraction, 𝑢𝑘 is the velocity, 𝜌𝑘 is the fluid 

density of each phase k, where k can assume the references G, L, D or B, relating to the 
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phase gas, liquid, droplets, or bubbles, respectively. In addition, the droplets density is 

equal to the liquid phase and the bubbles density is the same as the gas phase. Since the 

droplets phase is immersed in the gas phase, they share the same pressure and velocity, 

i.e., 𝑢𝐷 = 𝑢𝐺  , while the liquid and bubbles share the same pressure and velocity as well, 

i.e., 𝑢𝐵 = 𝑢𝐿. 

• Equations of conservation of momentum for the mixture gas and droplets phases, 

and for the mixture liquid and bubbles phases 

 

𝜕[(𝜌𝐺𝛼𝐺 + 𝜌𝐷𝛼𝐷)𝑢𝐺]

𝜕𝑡
+
𝜕[(𝜌𝐺𝛼𝐺 + 𝜌𝐷𝛼𝐷)𝑢𝐺

2 + (𝛼𝐺+𝛼𝐷)𝑝𝐺]

𝜕𝑥

= (𝑝𝐺 − 𝛥𝑝𝐼,𝐺)
𝜕(𝛼𝐺 + 𝛼𝐷)

𝜕𝑥
+ 𝐵𝑓𝐺 + 𝑇𝐼 + 𝑇𝐺𝑤 , 

 

(3.14) 

 

𝜕[(𝜌𝐿𝛼𝐿 + 𝜌𝐵𝛼𝐵)𝑢𝐿]

𝜕𝑡
+
𝜕[(𝜌𝐿𝛼𝐿 + 𝜌𝐵𝛼𝐵)𝑢𝐿

2 + (𝛼𝐿+𝛼𝐵)𝑝𝐿]

𝜕𝑥

= (𝑝𝐿 − 𝛥𝑝𝐼,𝐿)
𝜕(𝛼𝐿 + 𝛼𝐵)

𝜕𝑥
+ 𝐵𝑓𝐿 − 𝑇𝐼 + 𝑇𝐿𝑤. 

 

 

(3.15) 

 

For the 7E2P model, the volume fractions are defined as 

 

𝛼𝐿 ≡
𝐴𝐿

𝐴𝐿 + 𝐴𝐺 + 𝐴𝐷 + 𝐴𝐵
, 

(3.16) 

 

𝛼𝐺 ≡
𝐴𝐺

𝐴𝐿 + 𝐴𝐺 + 𝐴𝐷 + 𝐴𝐵
, 

(3.17) 

 

𝛼𝐷 ≡
𝐴𝐷

𝐴𝐿 + 𝐴𝐺 + 𝐴𝐷 + 𝐴𝐵
, 

(3.18) 

 

𝛼𝐵 ≡
𝐴𝐵

𝐴𝐿 + 𝐴𝐺 + 𝐴𝐷 + 𝐴𝐵
, 

(3.19) 

 

where 𝐴𝑘 is the area occupied by the phase k, that can be interpreted as L, for the liquid 

phase, G, for the gas phase, D, for the droplets phase or B for the bubbles phase. The 

volume fractions are also subject to the compatibility condition of 
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𝛼𝐿 + 𝛼𝐺 + 𝛼𝐷 + 𝛼𝐵 = 1. (3.20) 

 

3.3 Solution Procedure of the Models 
 

 To solve the 5E2P and 7E2P models it necessary to consider the source terms related 

to the pressure relaxation in Eqs. (3.1) and (3.9), which will lead to a two-step solution 

through an intermediate step of calculation. 

 The system of equations considers the phases as compressible, admitting different 

pressure values for each phase. In a one-dimensional formulation, it may be a problem, 

since a wave can propagate in each phase with different velocities and, consequently, 

distinct pressures. However, both fluids cannot sustain those pressure differences, leading 

to an equilibrium pressure in short time intervals. Since the models do not consider this 

process, a correction term must be added to recover the relaxation process.  

 The most common procedure is to impose an infinity pressure relaxation coefficient, 

𝑟𝑃 → ∞, referred in the literature as instantaneous pressure relaxation, as stated by Saurel 

and Abgrall (1999) and Munkejord (2010), since its value is known to be large for small 

relaxation time scales, but it has not been physically or experimentally determined.

 In this intermediate step of calculation, the first part consists of solving the system of 

hyperbolic partial differential equations, as described Eqs. (3.1) to (3.5) and Eqs. (3.9) to 

(3.15) using the pressure relaxation coefficient equal to zero. The solution of this 

hyperbolic part requires an appropriate numerical method that is discussed in the next 

chapter. Using as initial values the results already obtained from the hyperbolic solution, 

the second step is to solve the following ordinary differential equations: 

• For the 5E2P model: 

 

𝜕

𝜕𝑡
(𝛼𝐺) = 𝑟𝑃(𝑝𝐺 − 𝑝𝐿), 

(3.21) 

 

𝜕

𝜕𝑡
(𝜌𝐺𝛼𝐺) = 0, 

(3.22) 

 

𝜕

𝜕𝑡
(𝜌𝐿𝛼𝐿) = 0, 

(3.23) 

 
𝜕(𝜌𝐺𝛼𝐺𝑢𝐺)

𝜕𝑡
= 0, 

(3.24) 
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𝜕(𝜌𝐿𝛼𝐿𝑢𝐿)

𝜕𝑡
= 0. 

(3.25) 

 

• For the 7E2P model: 

 

𝜕

𝜕𝑡
(𝛼𝐺 + 𝛼𝐷) = 𝑟𝑃(𝑝𝐺 − 𝑝𝐿), 

(3.26) 

 

𝜕

𝜕𝑡
(𝜌𝐺𝛼𝐺) = 0, 

(3.27) 

 

𝜕

𝜕𝑡
(𝜌𝐿𝛼𝐿) = 0, 

(3.28) 

 

𝜕

𝜕𝑡
(𝜌𝐷𝛼𝐷) = 0, 

(3.29) 

 

𝜕

𝜕𝑡
(𝜌𝐵𝛼𝐵) = 0, 

(3.30) 

 

𝜕[(𝜌𝐺𝛼𝐺 + 𝜌𝐷𝛼𝐷)𝑢𝐺]

𝜕𝑡
= 0, 

(3.31) 

 
𝜕[(𝜌𝐿𝛼𝐿 + 𝜌𝐵𝛼𝐵)𝑢𝐿]

𝜕𝑡
= 0. 

(3.32) 

  

3.3.1 Instantaneous Pressure Relaxation for the 5E2P Model 

 

 In this procedure, described in Munkejord (2005) and based on the work of Saurel 

and Abgrall (1999), the parameter 𝑟𝑃 is equal to infinity to guarantee the instantaneous 

pressure equilibrium between the phases at each time step. It is more efficient to solve the 

problem analytically than solving the system Eqs. (3.21) to (3.25). Thus, a second-order 

equation can be used to modify the pressure value of the phases and keep the terms 𝜌𝑘𝛼𝑘 

and 𝜌𝑘𝛼𝑘𝑢𝑘 constant during the relaxation step. This second-order equation is only 

applicable when linear equations of state are used, such as the ones adopted in this work 

detailed as follows 
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𝑝𝑘 = 𝑐𝑘
2(𝜌𝑘 − 𝜌𝑘

0), (3.33) 

 

where the reference density, 𝜌𝑘
0, and the speed of sound, 𝑐𝑘, are specific constants of each 

fluid for a given thermodynamic state with constant temperature.  

 In the relaxation procedure, both pressures are equalized 

 

𝑝 = 𝑐𝐺
2(𝜌𝐺 − 𝜌𝐺

0) ≡ 𝑐𝐿
2(𝜌𝐿 − 𝜌𝐿

0). (3.34) 

 

 Calculating the square of the pressure and using Eq.(3.8) ,  

 

𝑝2 = 𝑐𝐺
2𝑐𝐿
2(𝜌𝐺 − 𝜌𝐺

0)(𝜌𝐿 − 𝜌𝐿
0)(𝛼𝐺 + 𝛼𝐿). (3.35) 

 

 After some mathematical manipulation, the second order equation is obtained 

 

𝜓1𝑝
2 +𝜓2𝑝 + 𝜓3 = 0, (3.36) 

 

where, 𝜓1 = 1, 𝜓2 = 𝑐𝐺
2(𝜌𝐺

0 − 𝛼𝐺𝜌𝐺) + 𝑐𝐿
2(𝜌𝐿

0 − 𝛼𝐿𝜌𝐿), 𝜓3 = 𝑐𝐺
2𝑐𝐿
2(𝜌𝐺

0𝜌𝐿
0 − 𝛼𝐺𝜌𝐺𝜌𝐿

0 −

𝛼𝐿𝜌𝐿𝜌𝐺
0). 

 The objective is to obtain the positive root of Eq. (3.36) given by 

 

𝑝 =
−𝜓2 + √𝜓2

2 − 4𝜓1𝜓3
2𝜓1

. 
(3.37) 

 

 After the computation of the relaxed pressure, all densities are recalculated using the 

equation of state, Eq. (3.33), as well as the new volume fractions that are obtained to 

guarantee that the products 𝜌𝑘𝛼𝑘 and 𝜌𝑘𝛼𝑘𝑢𝑘 keep a constant value from the hyperbolic 

step. Another way to derive the second-order equation is to modify the gas volume 

fraction, also maintaining the 𝜌𝑘𝛼𝑘 and 𝜌𝑘𝛼𝑘𝑢𝑘 unmodified, as suggested by Munkejord 

(2010) and Ferrari et al. (2017). 
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3.3.2 Instantaneous Pressure Relaxation for the 7E2P Model 

 

 For the 7E2P model, a similar procedure is performed to obtain the corresponding 

second-order equation and avoid numerically expensive method to solve the system given 

by Eqs. (3.26) to (3.32).          

 

𝑝 = 𝑐𝐺
2(𝜌𝐺 − 𝜌𝐺

0) ≡ 𝑐𝐿
2(𝜌𝐿 − 𝜌𝐿

0). (3.38) 

 

 Calculating the square of the pressure and using Eq.(3.8),  

 

𝑝2 = 𝑐𝐺
2𝑐𝐿
2(𝜌𝐺 − 𝜌𝐺

0)(𝜌𝐿 − 𝜌𝐿
0)(𝛼𝐺 + 𝛼𝐿 + 𝛼𝐷 + 𝛼𝐵). (3.39) 

 

 The second-order equation is obtained 

 

𝜓1𝑝
2 +𝜓2𝑝 + 𝜓3 = 0 (3.40) 

 

where, 𝜓1 = 1, 𝜓2 = 𝑐𝐺
2[𝜌𝐺

0 − (𝛼𝐺 + 𝛼𝐵)𝜌𝐺] + 𝑐𝐿
2[𝜌𝐿

0 − (𝛼𝐿 + 𝛼𝐷)𝜌𝐿], 𝜓3 =

𝑐𝐺
2𝑐𝐿
2[𝜌𝐺

0𝜌𝐿
0 − (𝛼𝐺 + 𝛼𝐵)𝜌𝐺𝜌𝐿

0 − (𝛼𝐿 + 𝛼𝐷)𝜌𝐿𝜌𝐺
0]. 

 The positive root of Eq. (3.40) is determined by 

 

𝑝 =
−𝜓2 + √𝜓2

2 − 4𝜓1𝜓3
2𝜓1

. 
(3.41) 

 

 As for the 5E2P, after the calculation of the relaxed pressure, all densities and volume 

fractions are recalculated in order to guarantee that the products 𝜌𝑘𝛼𝑘 and 𝜌𝑘𝛼𝑘𝑢𝑘 keep 

a constant value from the hyperbolic step. 

 

3.4 Closure Relations 
 

 In this section, the relations that close the above detailed system of equations for both 

models are presented. 
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3.4.1 Pressure Term in Momentum Equations 

 

 For the pressure correction term that appear in the momentum equations, the Bestion 

relation, described in Bestion (1990), is used, which is written for both mathematical 

models as 

 

𝛥𝑝𝐼,𝑘 ≡ 𝑝𝑘 − 𝑝𝐼,𝑘 = 𝛿
𝛼𝐺𝛼𝐿𝜌𝐺𝜌𝐿
𝛼𝐺𝜌𝐿+𝛼𝐿𝜌𝐺

(𝑢𝐺 − 𝑢𝐿)
2. (3.42) 

 

 This pressure correction term is commonly adopted in the literature, such as 

Munkejord (2010) and Freitas (2016). The parameter 𝛿 is dimensionless and, according 

to work of Evje and Flatten (2003), it is equal to 𝛿 = 1.2. 

 

3.4.2 Interfacial Velocity Term 

 

 Saurel and Abgrall (1999) proposed an estimation of the interfacial velocity, present 

in Eqs. (3.1) and (3.9), as a relation associated with the velocity of the center of mass 

 

𝑢𝐼 =
Ʃ𝛼𝑘𝜌𝑘𝑢𝑘
Ʃ𝛼𝑘𝜌𝑘

. 
(3.43) 

 

3.4.3 Body Force Term 

 

 The body forces terms account for the gravity effect and can be expressed as 

 

𝐵𝑓𝑘 = −𝜌𝑘𝛼𝑘𝑔 sin 𝜃, (3.44) 

 

where g is the gravity acceleration and 𝜃 is the inclination angle with the horizontal 

direction. 

 

3.4.4 Friction Relations 

 

 The friction terms that appear in the momentum equations are calculated from the 

following relations 
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𝑇𝑘𝑤 = −
𝜏𝑘𝑆𝑘
𝐴

,where, 𝜏𝑘 =
1

2
𝑓𝑘𝜌𝑘𝑢𝑘|𝑢𝑘|,  

(3.45) 

 

𝑇𝐼 =
𝜏𝐼𝑆𝐼
𝐴
,where, 𝜏𝐼 =

1

2
𝑓𝐼𝜌𝐺(𝑢𝐺 − 𝑢𝐿)|𝑢𝐺 − 𝑢𝐿|. 

(3.46) 

 

 In Eq. (3.45), 𝜏𝑘 is the friction stress at the wall and 𝑓𝑘 is the friction factor of each 

phase k. In Eq. (3.46), the variable 𝜏𝐼 is the friction stress at the interface and 𝑓𝐼 is the 

friction factor at the interface. In order to determine which friction correlations suits better 

in the prediction of slug initiation and development, Issa and Kempf (2003) compared 

several correlations with experiments. This study is taken as reference and the same 

correlations adopted by Issa and Kempf (2003), are used. 

 For the gas friction at the wall, the Taitel and Dukler’s (1976) correlation is 

implemented for turbulent flow and the Hagen-Poiseulle for laminar flow 

 

𝑓𝐺 = {

16

Re𝐺
 , if Re𝐺 ≤ 2100

0.046(Re𝐺)
−0.2 , otherwise

, 

 

(3.47) 

 

where Re𝐺 is the Reynolds number for the gas phase, defined as 

 

Re𝐺 =
𝜌𝐺𝐷ℎ𝐺|𝑢𝐺|

𝜇𝐺
, 

(3.48) 

 

where 𝜇𝐺 is the gas viscosity and 𝐷ℎ𝐺  is the hydraulic diameter related to the gas phase. 

For the liquid friction with the wall, the Spedding and Hand (1997) correlation is used 

 

𝑓𝐿 = {

24

Re𝐿
 , if Re𝐿 ≤ 2100

0.0262(𝛼𝐿Re𝑠𝐿)
−0.139 , otherwise

, 

 

(3.49) 

 

where Re𝐿 and Re𝑠𝐿 are the Reynolds number for the liquid phase related to the liquid 

velocity and to the superficial liquid velocity, respectively. These Reynolds number are 

defined as 
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Re𝐿 =
𝜌𝐿𝐷ℎ𝐿|𝑢𝐿|

𝜇𝐿
, 

(3.50) 

 

Re𝑠𝐿 =
𝜌𝐿𝐷|𝑢𝑠𝐿|

𝜇𝐿
. 

(3.51) 

 

The variable 𝜇𝐿 is the liquid viscosity, D is the pipeline diameter and 𝐷ℎ𝐿 is the hydraulic 

diameter related to the liquid phase.  

 For the interfacial friction, the Taitel and Dukler (1976) relation is applied, which was 

already detailed in Eq. (3.47). However, the Reynolds number that is used to calculate the 

interfacial friction is the interfacial Reynolds number defined at the interface 

 

Re𝐼 =
𝜌𝐺𝐷ℎ𝐺|𝑢𝐺 − 𝑢𝐿|

𝜇𝐺
. 

(3.52) 

 

3.4.5 Geometric Relations 

 

 Some geometric relations are necessary to complement the mathematical models. The 

hydraulic diameter of each phase is calculated as 

 

𝐷ℎ𝐺 = 4
𝐴𝐺

𝑆𝐺 + 𝑆𝐼
, 

(3.53) 

 

𝐷ℎ𝐿 = 4
𝐴𝐿
𝑆𝐿
. 

(3.54) 

 

 The variables 𝐴𝐺  and 𝐴𝐿 are the cross-section areas of the gas and liquid phases, 

respectively, given by 

 

𝐴𝐺 = 𝛼𝐺𝐴, (3.55) 

 

𝐴𝐿 = 𝛼𝐿𝐴. (3.56) 
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 The wetted perimeters of each phase, 𝑆𝐺 and 𝑆𝐿, are expressed as 

 

𝑆𝐿 = 𝐷 [𝜋 − cos−1 (2
ℎ𝐿
𝐷
− 1)], 

 

(3.57) 

 

𝑆𝐺 = 𝜋𝐷 − 𝑆𝐿 . (3.58) 

 

where ℎ𝐿 is the liquid height in the cross section of the pipe, and the wetted perimeter, 𝑆𝐼, 

is calculated as 

 

𝑆𝐼 = 𝐷√1 − (2
ℎ𝐿
𝐷
− 1)

2

. 

(3.59) 

 

 The last equation that must be presented is the relation between the liquid volume 

fraction with the liquid height. It can be written as 

 

𝑑ℎ𝐿
𝑑𝛼𝐿

=
𝜋𝐷

4

√1 − Ϛ2

1 − Ϛ2
, 

(3.60) 

 

and 

𝛼𝐿 =
1

𝜋
{𝜋 − cos−1[Ϛ] + Ϛ√(1 − Ϛ2)}, 

(3.61) 

 

where Ϛ is defined as 

 

Ϛ ≡
2ℎ𝐿
𝐷
− 1. 

(3.62) 

 

3.4.6 Hyperbolicity Analysis 

 

 The hyperbolicity analysis of the two-fluid model plays an important role when 

choosing the ideal mathematical model to be used in a numerical simulation. The 

mathematical models are represented by the governing equations, that are, in general, 

non-linear hyperbolic partial differential equations. With combination of distinct flow 
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parameters, the models might turn to be ill-posed, resulting in numerical instabilities and 

non-physical results. For carrying out the hyperbolicity analysis, the characteristic 

polynomial equations for each model are accessed in this section. To obtain them, the two 

sets of equations given by Eqs. (3.1) to (3.5) and Eqs. (3.9) to (3.15) are written in the 

following form, 

 

𝐌𝟏(𝐖)
𝜕𝐖

𝜕𝑡
+𝐌𝟐(𝐖)

𝜕𝐖

𝜕𝑥
= 𝐒(𝐖)‚ 

 

(3.63) 

 

where 𝐌𝟏 and 𝐌𝟐 are matrices that are expressed in terms of the primitive variables 

vector W. The polynomial is obtained through the following expression 

 

𝑃(𝜆) ≡ det(𝐌𝟐 − 𝜆𝐌𝟏) = 0. (3.64) 

 

The roots of Eq. (3.64) are the eigenvalues of the system of PDE’s. Whenever the 

eigenvalues are real and their eigenvectors are linearly independent, the model is said to 

be hyperbolic; a necessary condition for rendering the model well-posed. Another 

important point is the sign of eigenvalues, when computed at the pipe inlet (x=0) and 

outlet (x=L). They determine the proper number of boundary conditions to be prescribed 

to ensure a well-posed problem.  The number of positive eigenvalues at (x=0) and the 

number of negative eigenvalues at (x=L) indicate the number of boundary conditions to 

be provided at the pipe inlet and outlet, respectively (Jeffrey, 1976; Figueredo et al., 

2017). 

• Eigenvalues for the 5E2P Model 

 For the 5E2P model, as the fluid pressures are different, the primitive variables vector 

is written as 𝐖 ≡ [𝛼𝐺 𝑝𝐺 𝑝𝐿 𝑢𝐺 𝑢𝐿]𝑇 and the polynomial associated with det (𝐁 −

𝜆𝐀) is 

 

𝑃5E2P(𝜆) =
𝜌𝐺𝛼𝐺

2𝜌𝐿𝛼𝐿
2

𝑐𝐺2𝑐𝐿2
(𝑢𝐼 − 𝜆)[(𝑢𝐺 − 𝜆)

2 − 𝑐𝐺
2][(𝑢𝐿 − 𝜆)

2 − 𝑐𝐿
2]

= 0․ 

 

(3.65) 

 

 Differently from the 4E1P model, the roots of the 5E2P model are trivial and easily 

calculated analytically. The roots are: 𝜆1 = 𝑢𝐼; 𝜆2 = 𝑢𝐺 + 𝑐𝐺;  𝜆3 = 𝑢𝐺 − 𝑐𝐺;  𝜆4 = 𝑢𝐿 +
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𝑐𝐿;  𝜆5 = 𝑢𝐿 − 𝑐𝐿. Moreover, they are always real, and the set of the corresponding 

eigenvectors are linearly independent, making this model unconditionally hyperbolic, as 

long as (𝑢𝑘 − 𝑢𝐼)
2 − 𝑐𝑘

2 ≠ 0 for k ∈ {L, G} for the liquid and gas phases. If 

(𝑢𝑘 − 𝑢𝐼)
2 − 𝑐𝑘

2 = 0, the 𝑘-phase that obeys this condition should have −𝛥𝑝𝐼𝑘 +

𝜌𝑘𝑐𝑘
2 = 0 to be hyperbolic, as reported in Ransom and Hicks (1984). In this work, we 

mainly consider low-speed flows, so this restriction is not a concern, and the model is, in 

fact, unconditionally hyperbolic. It is worth mentioning that the eigenvalues do not 

depend on the pressure correction term, what gives this model more flexibility for dealing 

with different pressure correction terms in the simulations. 

• Eigenvalues for the 7E2P Model 

 For the 7E2P model, the primitive variables vector is written as 𝐖 =

[𝛼𝐺 𝛼𝐵 𝛼𝐷 𝑝𝐺 𝑝𝐿 𝑢𝐺 𝑢𝐿]𝑇  and the polynomial associated with det (𝐁 − 𝜆𝐀) is 

𝑃7𝐸2𝑃(𝜆) =
1

𝑐𝐺4𝑐𝐿4
(𝑢𝐼 − 𝜆)(𝑢𝐺 − 𝜆)(𝑢𝐿

− 𝜆)[(𝑢𝐺 − 𝜆)
2(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐷)(𝑐𝐺

2𝛼𝐷𝜌𝐺 + 𝑐𝐿
2𝛼𝐺𝜌𝐷)

− 𝑐𝐺
2𝑐𝐿

2𝜌𝐺𝜌𝐷 (𝛼𝐺 + 𝛼𝐷)
2][(𝑢𝐿 − 𝜆)

2(𝛼𝐿𝜌𝐿
+ 𝛼𝐵𝜌𝐵)(𝑐𝐺

2𝛼𝐿𝜌𝐵 + 𝑐𝐿
2𝛼𝐵𝜌𝐿)

− 𝑐𝐺
2𝑐𝐿

2𝜌𝐿𝜌𝐵 (𝛼𝐿 + 𝛼𝐵)
2] = 0․ 

 

 

(3.66) 

 

The roots are: 𝜆1 = 𝑢𝐼; 𝜆2 = 𝑢𝐺;  𝜆3 = 𝑢𝐿; 𝜆4 = 𝑢𝐺 − 𝑐𝐺/𝐷; 𝜆5 = 𝑢𝐺 + 𝑐𝐺/𝐷; 𝜆6 = 𝑢𝐿 −

𝑐𝐿/𝐵 ; 𝜆7 = 𝑢𝐿 + 𝑐𝐿/𝐵 .  

 The wave speeds of the gas/droplet and liquid/bubble mixtures, 𝑐𝐺/𝐷 and 𝑐𝐿/𝐵 are 

defined as 

𝑐𝐺/𝐷 = √
𝑐𝐺2𝑐𝐿2𝜌𝐺𝜌𝐷 (𝛼𝐺 + 𝛼𝐷)2

(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐷)(𝑐𝐺
2𝛼𝐷𝜌𝐺 + 𝑐𝐿2𝛼𝐺𝜌𝐷)

, 

 

(3.67) 

 

𝑐𝐿/𝐵 = √
𝑐𝐺2𝑐𝐿2𝜌𝐿𝜌𝐵 (𝛼𝐿 + 𝛼𝐵)2

(𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐵)(𝑐𝐺
2𝛼𝐿𝜌𝐵 + 𝑐𝐿2𝛼𝐵𝜌𝐿)

. 

 

(3.68) 

 

 The eigenvalues are always real and analytically determined if the fluid densities and 

volume fractions are positive, which is a standard physical condition of the flow. A 

similar analysis can be performed for the 7E2P, as Ransom and Hicks (1984) did for the 
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5E2P and considering that in this work, we mainly consider low-speed flows, the model 

is unconditionally hyperbolic.  

 In order to better characterize how the pressure and bubble volume fraction influence 

the liquid/bubble mixture wave speed, 𝑐𝐿/𝐵, Fig. 2 illustrates the behavior of the ratio of 

the liquid/bubble mixture wave speed to the liquid wave speed, 𝑐𝐿/𝐵 𝑐𝐿⁄ , as a function of 

the pressure, for several values of the bubble volume fraction, for the air-water mixture. 

In this analysis, the liquid volume fraction is constant and equal to 50%, the droplet 

volume fraction is 10−7. The gas volume fraction is the complement of the sum of all the 

remaining volume fractions and for each curve in the plot the bubble volume fraction is 

varying from 10−8 to 10−3. 

 

 

Figure 2: Dimensionless liquid-bubble mixture wave speed as a function of the pressure 

for several bubble volume fractions for the air-water mixture, with 𝛼𝐿 = 0.5 and 𝛼𝐷 =
10−7. 

 

The same analysis is performed for the gas-droplet mixture wave speed. In Fig. 3, the 

ratio 𝑐𝐺/𝐷 𝑐𝐺⁄ , that corresponds to the ratio of the gas/droplet mixture wave speed to the 

gas wave speed, is represented as a function of pressure for several droplet volume 

fraction for the air-water mixture. The gas volume fraction is constant and equal to 50%, 

the bubble volume fraction is 10−7 and the liquid volume fraction is the complement of 

all volume fractions. For each curve, the droplet volume fraction is changing from 10−8 

to 10−3. 



31 

 

 

 

Figure 3: Dimensionless gas-droplet mixture wave speed as a function of the pressure 

for several droplet volume fractions for the air-water mixture, with 𝛼𝐺 = 0.5 and 𝛼𝐵 =
10−7. 

  

 As it can be noticed, in both analyses, the mixture wave speeds in an air-water 

scenario are strongly influenced, in a non-linear way, by the pressure and by the bubble 

and droplet volume fractions. Considering the magnitude of the pressure and volume 

fractions, small variations in these variables cause significant changes in the mixture wave 

speeds. For higher pressures values and small volume fractions, bubbles or droplets, the 

mixture wave speeds approach the liquid or gas wave speed, respectively. However, for 

lower pressures and higher bubble or droplet volume factions in the mixture, the mixture 

wave speeds can achieve small values, distancing from the liquid or gas wave speed. For 

this reason, in the 7E2P model simulations, the bubble and droplet volume fractions 

considered as initial conditions are 10−7 to guarantee that the mixture wave speeds are as 

close as possible to the liquid or gas wave speeds, respectively.  

 

3.4.7 Slug Body Modeling 

 

 The two-fluid model is subject to a singularity when one of the phases vanishes. In 

the slug flow, it happens when the liquid volume fraction tends to unity and the void 

fraction goes to zero. This phenomenon occurs even with the 7E2P model, where the gas 
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phase is present in the form of bubbles, and the void fraction may still approach zero 

asymptotically.  

 Physically, because there is no mass transfer between the phases, there is no 

mechanism that allows one phase to vanish. However, mathematically, there is nothing 

in the equations that prevent the volume fractions from being greater than one and less 

than zero during the numerical solution. During the numerical calculation, if the solution 

of the mathematical equations returns a holdup value greater than one or less than zero, 

the solution is non-physical, even if the simulation continues. Moreover, there is a 

necessity to control the gas velocity in the slug region to prevent it from reaching high 

values, which does not represent the real condition of the flow when it is filled with liquid. 

The gas velocity goes to high values in that region due to the throat that is formed between 

the liquid slug and the pipe wall when the pipe section is almost filled with liquid. 

 To avoid this mathematical issue, many authors in the literature, such as Issa and 

Kempf (2003) and Nieckele et al. (2013), consider that when the holdup approaches unity, 

within a certain range, the gas velocity is set to zero to avoid the solution of the gas 

momentum equation. This technique was implemented in this work, although more 

sophisticated solutions to deal with this issue were also tested and presented more 

physically consistent results.  

 In the slug body, the gas phase that is present has a void fraction in a range close to 

zero and can be interpreted as small bubbles. The velocity of these bubbles (gas phase) 

can be calculated in various forms.  

 Trying to model the phase appearance and disappearance, Paillère et al. (2003) 

bounded the velocity of the vanishing phase. They stated that from a physical point of 

view, this velocity tends to the velocity of the remaining phase and added a positive 

function to do that in a smooth way. In the case that the gas phase is the one that is 

vanishing, its velocity is calculated by 

 

𝑢𝐺 = 𝐺(𝛼𝐺)𝑢𝐺 + [1 − 𝐺(𝛼𝐺)]𝑢𝐿 , (3.69) 

  

 This form to bound the velocity of the vanishing phase is similar to a velocity 

relaxation, as studied by Munkejord (2005). The velocity relaxation is applied to consider 

no slip relation between the phases. The velocity relaxation term replaces the interfacial 

friction term and can be modeled analogously to the instantaneous pressure relaxation 

procedure. The instantaneous velocity relaxation procedure can be employed in the same 
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way as Saurel and Abgrall (1999), changing 𝜌𝑘𝛼𝑘𝑢𝑘 while keeping ∑𝜌𝑘𝛼𝑘𝑢𝑘, 𝜌𝑘𝛼𝑘 and 

𝛼𝑘 constant, so that 𝑢𝐺 = 𝑢𝐿 according to 

 

𝑢𝐺 = 𝑢𝐿 =
Ʃ𝛼𝑘𝜌𝑘𝑢𝑘0
Ʃ𝛼𝑘𝜌𝑘

, 
(3.70) 

 

where the subscript 0 is related to the initial value given to the relaxation procedure. 

 Another approach to control the gas velocity in the slug body is by having a closure 

relation that calculates the gas velocity as a different phase, for example, bubbles. 

Assuming steady motion and considering the balance between pressure and drag forces, 

Bonizzi and Issa (2003) suggested the following equation for their gas entrainment model, 

 

𝑢𝐵 = 𝑢𝐿 −
√
−4𝑑𝐵 (

𝑑𝑝
𝑑𝑥
⁄ )

3𝐶𝐷𝜌𝐿
, 

(3.71) 

 

where the pressure term implies a negative pressure gradient and 𝑑𝐵 is the bubble 

diameter that was assumed to be 1mm. The drag coefficient term, 𝐶𝐷, is calculated as 

 

𝐶𝐷 =
𝐶𝐷𝑇

√𝛼𝐿
. 

(3.72) 

 

and 

𝐶𝐷𝑇 = 𝑚𝑎𝑥 [
24

Re𝐵
(1 + 0.15Re𝐵

0.687),
8

3

𝐸𝑜

𝐸𝑜 + 4
]. 

(3.73) 

 

The Reynolds, Re𝐵, and the Eötvös, 𝐸𝑜, numbers are given by 

 

Re𝐵 =
𝜌𝐿𝑑𝐵|𝑢𝐿 − 𝑢𝐵|

𝜇𝐿
, 

(3.74) 

 

𝐸𝑜 =
𝑔(𝜌𝐿 − 𝜌𝐺)𝑑𝐵

2

𝜎
, 

(3.75) 
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where 𝜎 is the surface tension and g is the gravity acceleration.  

 An alternative is to calculate the gas velocity as the gas-bubble velocity in the slug, 

as presented in Shoham (2006), based on the drift velocity of the bubbles of Harmathy 

(1960). 

 

𝑢𝐺 = 𝑐0𝑢𝑚 + 1.53 [
𝑔𝜎(𝜌𝐿 − 𝜌𝐺)

𝜌𝐿2
]

0.25

𝛼𝐿
0.5 sin 𝜃, 

 

(3.76) 

 

where, 𝑢𝑚 is the mixture velocity and 𝑐0 is the distribution coefficient that has the most 

probable value of 𝑐0 = 1.2, and for horizontal and nearly horizontal flow, it is 𝑐0 = 1. 
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4. Numerical Methods 
 

 Numerical simulation of two-phase flows is a problem of complex nature due to the 

non-linearity of the equations. Thus, the choice of the numerical method that will return 

accurate results for the solution of this problem is a crucial step that must be widely 

explored in the development of the numerical algorithm.  

 The evaluation, verification and validation of a numerical model are essential steps to 

ensure that the solutions generated are representative of the physics of the problem. In a 

general manner, there are no practical engineering problems of two-phase flow in 

pipelines that have a complete analytical solution. Nonetheless, there are widely used 

benchmark problems in the literature that have approximate analytical solutions that are 

obtained through assumptions or approximation based on well-known physical concepts.  

 Many works in the literature are focused on the numerical solution of these benchmark 

problems, such as the shock tube, the water faucet, the segregation problems, among 

others. These works serve as references for the selection of promising numerical 

techniques, as they point out advantages and disadvantages of each implemented 

methodology, such as their behavior close to discontinuities and sharp gradients, as well 

as the influence of diffusion and dispersion in the solution. Other works are focus on the 

verification and validation of their numerical models through comparison with 

experimental data (laboratory or field) or with software simulations that are widely used 

by the oil and gas industry.  

 

4.1 Numerical Method Selection 
 

 Some literature works serve as a guide in the decision of the best numerical technique 

to be implemented. As a first example, in the work of Omgba-Essama (2004) several 

comparisons were made between centered numerical schemes, such as Lax-Friedrichs, 

Ritchmyer, FORCE, Flux-Corrected Transport (FCT), and some other techniques 

inspired in the characteristic’s method, as Rusanov and TVD Lax-Friedrichs.  

The most notable characteristics of each methodology were observed through benchmark 

problems and the solution of the stratified flow in pipelines. In general, the FCT method 

was the one that presented the most accurate result for the tests performed by the authors, 

followed by TVD Lax-Friedrichs, Rusanov and FORCE methods. Moreover, the Lax-
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Friedrichs method seemed to be the less accurate of all methods studied, presenting too 

much numerical diffusion. The Ritchmyer method, on the other hand, was too dispersive 

and presented oscillations near discontinuities, which do not provide confidence to the 

users for application in more complex problems, such as slug capturing. Further works 

with the FCT method also presented good results for the solution of two-phase flow 

problems, especially in the stratified flow pattern. Figueiredo et al. (2017) and 

Sondermann et al. (2019) compared the results with the commercial software OLGA for 

isothermal and non-isothermal stratified flow, respectively. Even though the FCT 

numerical method is robust and capable of dealing with the solution of hyperbolic partial 

differential equations, it was not able to generate the slug flow during the simulations 

tests that were performed herein. The FCT method presented intense diffusion that 

mitigated the growth of the waves and, consequently, the slug flow could not be generated 

in the pipeline during the numerical simulation. Other methods that were implemented 

during the development of this work are the TVD WAF (Total Variation Diminishing – 

Weighted Average Flux) and the approximate Riemann solver HLL (Harten, Lax and van 

Leer), according to Toro (1999). Both methods presented diffusive behavior, similar to 

the FCT, and could not generate the slug flow when tested for this type of flow conditions. 

 As an alternative to those methods, other types of numerical approaches were 

considered, taking as reference publications in the literature with a similar application 

scenario.  In the work of Ferrari et al. (2017), the authors performed slug capturing 

numerical simulations, in which the mathematical model is solved by means of a high-

resolution Roe solver (Roe, 1981) that consists of an approximate solution of the Riemann 

problem at the cell interface. The Roe method is accurate, specially near sharp gradients 

and discontinuities, which is a particularly good advantage in slug capturing simulations. 

The implementation of the method depends directly on the system of equations that is 

being solved. This method was also investigated by Munkejord (2007), that simulated 

benchmark problems, such as the shock tube and the water faucet, as a numerical 

validation, and to verify how the method behaves with different mathematical models.  

 In the work of Ansari and Daramizadeh (2012), the authors used another interesting 

numerical approach to simulate slug flow in pipelines. They used the AUSMDV method, 

which is a variation of the AUSM (Advection Upstream Splitting Method) that was 

initially presented by Liou and Steffen (1993). This method does not need any 

characteristic analysis of the system of equations, it has a low computational cost and a 

simpler numerical implementation, if compared to high-resolution methods, such as the 
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approximate Riemann solvers. Many authors studied this method more deeply, as Paillère 

et al. (2003), Evje and Flätten (2003). Other variations of the AUSM method can be 

implement, like the AUSM+ (Liou, 1996), AUSMV and AUSMD. The last two 

variations, AUSMV and AUSMD, are similar to a Flux Vector Splitting (FVS) and a Flux 

Difference Splitting (FDS), respectively. FVS methods tend to be more diffusive and 

simpler and the FDS, more complex and accurate. The AUSMDV method is a balance 

between these two methods (AUSMV and AUSMD), in which each of them is weighted 

to have an influence in the final solution. Although this means that the method has an 

adjustment/tunning parameter, which can be considered as loss of generality, it can also 

indicate greater control over the solution by highlighting the positive aspects of each of 

the methods involved. Loilier et al. (2005) and Coelho et al. (2010) used the AUSMDV 

in their simulations of benchmark problems to analyze the behavior of the method in those 

scenarios. The results confirmed that the AUSM-type methods are a great alternative if 

compared to the ones based on the Riemann solution. These AUSM-type methods are 

simple to implement and, at the same time, have excellent accuracy comparable to 

methods based on the solution of the Riemann problem. This fact is very encouraging, 

both in terms of simplicity and in terms of computational time. 

 Based on the literature review on numerical methods used to simulate the slug flow, 

the Roe and the AUSMDV methods are the ones that are implemented in this work. On 

the one hand, the Roe method gives the accuracy and the complex implementation of the 

approximate Riemann solver. On the other hand, the AUSMDV method shows the 

balance between the FVS and FDS methods with a simpler implementation and accurate 

results.  

 In the next sections, both methods are detailed separately. First, the AUSM-type 

methods based on the calculation of the intercell flux are described and, in the sequence, 

the Roe scheme, which has the Roe matrix solved by means of the determination of the 

Jacobian matrix.  

 

4.2 AUSM-Type Methods 
 

 To obtain an approximate numerical solution of an initial and boundary value 

problem, the system of equations must be rewritten in a canonical form of the 

conservation law. In this form, Q is the conservative variables vector, F is the flux vector, 
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W is the primitive variables vector, H is the non-conservative matrix, S is the source term 

vector and N is the non-conservative vector.  

 As described in chapter 3 of this work, two different mathematical models are 

considered: the 5E2P (five equations and two pressures) and the 7E2P (seven equations 

and two pressures) models. They can be written in the canonical form as 

 

𝜕𝐐

𝜕𝑡
+
𝜕𝐅

𝜕𝑥
= 𝐇

𝜕𝐍

𝜕𝑥
+ 𝐒, 

(4.1) 

 

where Q, F, H, N S and W are detailed differently for the two models: 

• 5E2P model: 

 

𝐖 =

[
 
 
 
 
𝛼𝐺
𝑝𝐺
𝑝𝐿
𝑢𝐺
𝑢𝐿 ]
 
 
 
 

‚__𝐇 =

[
 
 
 
 
𝑢𝐼 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 𝛼𝐺 0
0 0 0 0 𝛼𝐿]

 
 
 
 

‚𝐅 =

[
 
 
 
 

0
𝜌𝐺𝛼𝐺𝑢𝐺
𝜌𝐿𝛼𝐿𝑢𝐿

𝜌𝐺𝛼𝐺𝑢𝐺
2 + 𝛼𝐺𝛥𝑝𝐼𝐺

𝜌𝐿𝛼𝐿𝑢𝐿
2 + 𝛼𝐿𝛥𝑝𝐼𝐿 ]

 
 
 
 

‚ 

 
 

(4.2) 

 

𝐍 =

[
 
 
 
 

−𝛼𝐺
0
0

(𝛥𝑝𝐼𝐺 − 𝑝𝐺)
(𝛥𝑝𝐼𝐿 − 𝑝𝐿)]

 
 
 
 

‚ 𝐐 =

[
 
 
 
 

𝛼𝐺
𝜌𝐺𝛼𝐺
𝜌𝐿𝛼𝐿
𝜌𝐺𝛼𝐺𝑢𝐺
𝜌𝐿𝛼𝐿𝑢𝐿 ]

 
 
 
 

, 

 

(4.3) 

 

𝐒 =

[
 
 
 
 
 
 
 

𝑟𝑝(𝑝𝐺 − 𝑝𝐿)

0
0

−𝜌𝐺𝛼𝐺𝑔 𝑠𝑖𝑛 𝛽 −
𝜏𝐼𝑆𝐼
𝐴𝑖

−
𝜏𝐺𝑆𝐺
𝐴

−𝜌𝐿𝛼𝐿𝑔 𝑠𝑖𝑛 𝛽 +
𝜏𝐼𝑆𝐼
𝐴𝑖

−
𝜏𝐿𝑆𝐿
𝐴 ]

 
 
 
 
 
 
 

. 

 

 

(4.4) 
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• 7E2P model: 

 

𝐖 =

[
 
 
 
 
 
 
𝛼𝐺
𝛼𝐵
𝛼𝐷
𝑝𝐺
𝑝𝐿
𝑢𝐺
𝑢𝐿 ]
 
 
 
 
 
 

‚ 𝐇 =

[
 
 
 
 
 
 
𝑢𝐼 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 𝛼𝐺 + 𝛼𝐷 0 0 0
0 0 0 0 𝛼𝐿 + 𝛼𝐵 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

‚ 

 

 

(4.5) 

 

𝐅 =

[
 
 
 
 
 
 

0
𝜌𝐺𝛼𝐺𝑢𝐺
𝜌𝐿𝛼𝐿𝑢𝐿

𝜌𝐺𝛼𝐺𝑢𝐺
2 + 𝜌𝐿𝛼𝐷𝑢𝐺

2 + (𝛼𝐺 + 𝛼𝐷)𝛥𝑝𝐼𝐺
𝜌𝐿𝛼𝐿𝑢𝐿

2 + 𝜌𝐺𝛼𝐵𝑢𝐿
2 + (𝛼𝐿 + 𝛼𝐵)𝛥𝑝𝐼𝐿

𝜌𝐺𝛼𝐵𝑢𝐿
𝜌𝐿𝛼𝐷𝑢𝐺 ]

 
 
 
 
 
 

‚ 𝐍 =

[
 
 
 
 
 
 
−(𝛼𝐺 + 𝛼𝐷)

0
0

(𝛥𝑝𝐼𝐺 − 𝑝𝐺)
(𝛥𝑝𝐼𝐿 − 𝑝𝐿)

0
0 ]

 
 
 
 
 
 

, 

 

 

(4.6) 

 

𝐐 =

[
 
 
 
 
 
 

𝛼𝐺 + 𝛼𝐷
𝜌𝐺𝛼𝐺
𝜌𝐿𝛼𝐿

(𝜌𝐺𝛼𝐺+𝜌𝐿𝛼𝐷)𝑢𝐺
(𝜌𝐿𝛼𝐿 + 𝜌𝐺𝛼𝐵)𝑢𝐿

𝜌𝐺𝛼𝐵
𝜌𝐿𝛼𝐷 ]

 
 
 
 
 
 

, 𝐒 =

[
 
 
 
 
 
 
 
 
 

𝑟𝑝(𝑝𝐺 − 𝑝𝐿)

0
0

−𝜌𝐺𝛼𝐺𝑔 𝑠𝑖𝑛 𝛽 −
𝜏𝐼𝑆𝐼
𝐴𝑖

−
𝜏𝐺𝑆𝐺
𝐴

−𝜌𝐿𝛼𝐿𝑔 𝑠𝑖𝑛 𝛽 +
𝜏𝐼𝑆𝐼
𝐴𝑖

−
𝜏𝐿𝑆𝐿
𝐴

0
0 ]

 
 
 
 
 
 
 
 
 

. 

 

 

 

(4.7) 

 

4.2.1 General Numerical Discretization 

 

 To discretize the 5E2P and 7E2P models, a uniform mesh of N computational cells 

along the pipe length, L, is considered. Each cell has a regular size 𝛥𝑥, 

 

𝛥𝑥 ≡ 𝑥
𝑗+
1
2
− 𝑥

𝑗−
1
2
 =

𝐿

𝑁
 

(4.8) 

 

where 𝑥𝑗−1/2 = (𝑗 − 1)𝛥𝑥 and 𝑥𝑗+1/2 = 𝑗𝛥𝑥 are the left and right cell boundaries with 

𝑗 = 1, . . . , 𝑁. The cell center is located at the position 𝑥𝑗 = (𝑗 −
1

2
)𝛥𝑥.  

 An explicit discretization of the numerical approximation is obtained to calculate the 

vector  𝐐𝑗
𝑛+1, at the time instant 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡, through a general finite-difference form 



40 

 

𝐐𝑗
𝑛+1 = 𝐐𝑗

𝑛 −
𝛥𝑡

𝛥𝑥
[𝐅
𝑗+
1
2

𝑛 − 𝐅
𝑗−
1
2

𝑛 ] + 𝛥𝑡 (𝐇
∂𝐍

∂𝑥
)
𝑗

𝑛

+ 𝛥𝑡𝐒𝑗
𝑛 

 

(4.9) 

 

where 𝐐𝑗
𝑛 is an approximation of Q at the position j and time instant 𝑡𝑛, 𝛥𝑡 is the time 

step. The 𝐅𝑗+1/2
𝑛  and 𝐅𝑗−1/2

𝑛  terms account for the inter-cell flux vectors at 𝑥𝑗+1/2 and 

𝑥𝑗−1/2, at time 𝑡𝑛. 

 For an explicit discretization, the CFL (Courant-Friedrichs-Lewy) condition must be 

considered in order to keep the numerical stability of the method. The time step, 𝛥𝑡, is 

calculated according to 

 

Δ𝑡 = CFL
∆𝑥

|𝜆|𝑚𝑎𝑥
, 

(4.10) 

 

where CFL is a positive number, less or equal to unity. The parameter  |𝜆|𝑚𝑎𝑥 represents 

the largest eigenvalue of the flow domain in absolute value in each cell and each time 

step. 

 

4.2.2 Discretization of the Flux Term  

 

 To calculate the flux term that appears in Eq. (4.9), numerical methods are required 

to obtain the left and right cell boundaries of the position j. For that, the AUSMDV 

method and consequently the AUSM-type methods (Advection Upstream Splitting 

Method) that compose the AUSMDV method, AUSMV and AUSMD, are detailed.  

 The AUSM method was first proposed by Liou and Steffen (1993) for single phase 

flow. Differently from the methods that employ approximate Riemann solvers, like the 

Roe method, the AUSM-type methods are considered as simple, because there is no need 

to obtain the Jacobian matrix, which adds considerable difficulty to the solution. In 

addition, the method aims to be accurate, robust and of low computational cost.  

 AUSM-type methods are considered as hybrid flux-splitting, i.e., they present hybrid 

characteristics of two types of numerical schemes, FVS (flux vector splitting) and FDS 

(flux difference splitting). The main idea is to combine the efficiency of the FVS methods, 

whose flux is obtained through scalar calculations, with the accuracy of the FDS, whose 

flux is obtained by matrix calculations. FVS methods are easier to implement and more 
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efficient, but they are generally more diffusive than FDS methods, as confirmed by Evje 

and Flätten (2003). The flux term for AUSM-type numerical schemes is separated into 

convective flux term and pressure flux term, as given by 

 

𝐅
𝑗+
1
2

AUSM = 𝐅
𝑗+
1
2

𝑐 + 𝐅
𝑗+
1
2

𝑝
. (4.11) 

 

For the 5E2P model 

 

𝐅𝑐 =

[
 
 
 
 

0
𝜌𝐺𝛼𝐺𝑢𝐺
𝜌𝐿𝛼𝐿𝑢𝐿
𝜌𝐺𝛼𝐺𝑢𝐺

2

𝜌𝐿𝛼𝐿𝑢𝐿
2 ]
 
 
 
 

, 𝐅𝑝 =

[
 
 
 
 

0
0
0

𝛼𝐺𝛥𝑝𝐼𝐺
𝛼𝐿𝛥𝑝𝐼𝐿 ]

 
 
 
 

. 

 

 

(4.12) 

 

And for the 7E2P model:  

 

𝐅𝑐 =

[
 
 
 
 
 
 

0
𝜌𝐺𝛼𝐺𝑢𝐺
𝜌𝐿𝛼𝐿𝑢𝐿

𝜌𝐺𝛼𝐺𝑢𝐺
2 + 𝜌𝐿𝛼𝐷𝑢𝐺

2

𝜌𝐿𝛼𝐿𝑢𝐿
2 + 𝜌𝐺𝛼𝐵𝑢𝐿

2

𝜌𝐺𝛼𝐵𝑢𝐿
𝜌𝐿𝛼𝐷𝑢𝐺 ]

 
 
 
 
 
 

, 𝐅𝑝 =

[
 
 
 
 
 
 

0
0
0

(𝛼𝐺 + 𝛼𝐷)𝛥𝑝𝐼𝐺
(𝛼𝐿 + 𝛼𝐵)𝛥𝑝𝐼𝐿

0
0 ]

 
 
 
 
 
 

. 

 

 

(4.13) 

  

 In later work, Wada and Liou (1997), added some modifications to the original 

method, this time also for single phase flow, that inspired Evje and Flätten (2003) to 

improve the schemes known as AUSMV and AUSMD. The AUSMV method tends 

towards an FVS method, while the AUSMD tends towards an FDS. For both methods, 

 

𝑉̃±(𝑢𝑘, 𝑐, 𝜒
𝐿,𝑅) = {

𝜒𝐿,𝑅 [±
1

4𝑐
(𝑢𝑘 ± 𝑐)

2] + (1 − 𝜒𝐿,𝑅)
𝑢𝑘 ± |𝑢𝑘|

2
, if|𝑢𝑘| ≤ 𝑐

𝑢𝑘 ± |𝑢𝑘|

2
, otherwise,

 

 

(4.14) 

 

where  
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𝜒𝐿 =
2(𝜌 𝛼⁄ )𝐿

(𝜌 𝛼⁄ )𝐿 + (𝜌 𝛼⁄ )𝑅
, 𝜒𝑅 =

2(𝜌 𝛼⁄ )𝑅

(𝜌 𝛼⁄ )𝐿 + (𝜌 𝛼⁄ )𝑅
. 

(4.15) 

 

 The indexes L or R indicate the left and right cells, respectively. The subscript k 

represents the phase, gas, liquid, droplets, or bubbles, depending on the mathematical 

model that is considered. The parameter c in Eq. (4.14) is the speed of sound for the 

mixture that can be modeled in several ways. In this work, this term is calculated as an 

average of the speeds of sound of the gas and liquid phases in order to obtain a common 

speed of sound, as in the work of Kitamura and Liou (2012). Even though the choice of 

this term may allow the exact capturing of a stationary shock, as stated by Wada and Liou 

(1997), this study is not the focus of this work and it is not discussed here. The term 𝑢𝑘 

is the fluid velocity of the phase k. 

 For the calculation with the AUSMV, considering the components of the vector Q in 

Eq. (4.3) for the 5E2P model, the convective flux is defined as 

 

𝐅
𝑗+
1
2

𝑐 =

[
 
 
 
 
 
 
 
 

0

𝐐2,𝑗𝑉̃
+ ((𝑢𝐺)𝑗, 𝑐𝑗+1

2
, 𝜒𝐺
𝐿) + 𝐐2,𝑗+1𝑉̃

− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1
2
, 𝜒𝐺
𝑅)

𝐐3,𝑗𝑉̃
+ ((𝑢𝐿)𝑗, 𝑐𝑗+1

2
, 𝜒𝐿
𝐿) + 𝐐3,𝑗+1𝑉̃

− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1
2
, 𝜒𝐿
𝑅)

𝐐4,𝑗𝑉̃
+ ((𝑢𝐺)𝑗, 𝑐𝑗+1

2
, 𝜒𝐺
𝐿) + 𝐐4,𝑗+1𝑉̃

− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1
2
, 𝜒𝐺
𝑅)

𝐐5,𝑗𝑉̃
+ ((𝑢𝐿)𝑗, 𝑐𝑗+1

2
, 𝜒𝐿
𝐿) + 𝐐5,𝑗+1𝑉̃

− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1
2
, 𝜒𝐿
𝑅)
]
 
 
 
 
 
 
 
 

. 

 

 

 

(4.16) 

 

 For the 7E2P model, considering the vector Q in Eq. (4.7) and defining the following 

terms to simplify the convective flux, 

𝐅𝐺,𝑄𝑀𝐿
𝑐 ≡ 𝐐2,𝑗(𝑢𝐺)𝑗𝑉̃

+ ((𝑢𝐺)𝑗, 𝑐𝑗+1
2
, 𝜒𝐺

𝐿)

+ 𝐐2,𝑗+1(𝑢𝐺)𝑗+1𝑉̃
− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐺

𝑅), 

 

(4.17) 

 

𝐅𝐿,𝑄𝑀𝐿
𝑐 ≡ 𝐐3,𝑗(𝑢𝐿)𝑗𝑉̃

+ ((𝑢𝐿)𝑗, 𝑐𝑗+1
2
, 𝜒𝐿

𝐿)

+ 𝐐3,𝑗+1(𝑢𝐿)𝑗+1𝑉̃
− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐿

𝑅), 

 

(4.18) 
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to obtain 

 

𝐅
𝑗+
1
2

𝑐

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

0

𝐐2,𝑗𝑉̃
+ ((𝑢𝐺)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐺

𝐿) + 𝐐2,𝑗+1𝑉̃
− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐺

𝑅)

𝐐3,𝑗𝑉̃
+ ((𝑢𝐿)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐿

𝐿) + 𝐐3,𝑗+1𝑉̃
− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐿

𝑅)

𝐅𝐺,𝑄𝑀𝐿
𝑐 + 𝐐7,𝑗(𝑢𝐺)𝑗𝑉̃

+ ((𝑢𝐺)𝑗 , 𝑐𝑗+1
2
, 𝜒𝐷

𝐿) + 𝐐7,𝑗+1(𝑢𝐺)𝑗+1𝑉̃
− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐷

𝑅)

𝐅𝐿,𝑄𝑀𝐿
𝑐 +𝐐6,𝑗(𝑢𝐿)𝑗𝑉̃

+ ((𝑢𝐿)𝑗 , 𝑐𝑗+1
2
, 𝜒𝐵

𝐿) + 𝐐6,𝑗+1(𝑢𝐿)𝑗+1𝑉̃
− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐵
𝑅)

𝐐6,𝑗𝑉̃
+ ((𝑢𝐿)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐵

𝐿) + 𝐐6,𝑗+1𝑉̃
− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐵
𝑅)

𝐐7,𝑗𝑉̃
+ ((𝑢𝐺)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐷

𝐿) + 𝐐7,𝑗+1𝑉̃
− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐷

𝑅)
]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

 

 

 
 

(4.19) 

  

 For the calculation with the AUSMD, also considering the components of the vector 

Q in Eq. (4.3) for the 5E2P model, the convective flux is defined as 

𝐅
𝑗+
1
2

𝑐 =

[
 
 
 
 
 
 
 
 

0

𝐐2,𝑗𝑉̃
+ ((𝑢𝐺)𝑗, 𝑐𝑗+1

2
, 𝜒𝐺
𝐿) + 𝐐2,𝑗+1𝑉̃

− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1
2
, 𝜒𝐺
𝑅)

𝐐3,𝑗𝑉̃
+ ((𝑢𝐿)𝑗, 𝑐𝑗+1

2
, 𝜒𝐿
𝐿) + 𝐐3,𝑗+1𝑉̃

− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1
2
, 𝜒𝐿
𝑅)

0.5 {(𝐅𝑗+1/2
𝑐 )

2
[(𝑢𝐺)𝑗 + (𝑢𝐺)𝑗+1] − |(𝐅𝑗+1/2

𝑐 )
2
| [(𝑢𝐺)𝑗+1 − (𝑢𝐺)𝑗]}

0.5 {(𝐅𝑗+1/2
𝑐 )

3
[(𝑢𝐿)𝑗 + (𝑢𝐿)𝑗+1] − |(𝐅𝑗+1/2

𝑐 )
3
| [(𝑢𝐿)𝑗+1 − (𝑢𝐿)𝑗]} ]

 
 
 
 
 
 
 
 

. 

 

 

 

(4.20) 

  

 For the 7E2P model, considering the vector Q in Eq. (4.7), 

𝐅
𝑗+
1
2

𝑐 = 

[
 
 
 
 
 
 
 
 
 
 
 
 

0

𝐐2,𝑗𝑉̃
+ ((𝑢𝐺)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐺

𝐿) + 𝐐2,𝑗+1𝑉̃
− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐺

𝑅)

𝐐3,𝑗𝑉̃
+ ((𝑢𝐿)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐿

𝐿) + 𝐐3,𝑗+1𝑉̃
− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐿

𝑅)

0.5 {[(𝐅𝑗+1/2
𝑐 )

2
+ (𝐅𝑗+1/2

𝑐 )
7
] [(𝑢𝐺)𝑗 + (𝑢𝐺)𝑗+1] − [|(𝐅𝑗+1/2

𝑐 )
2
| + |(𝐅𝑗+1/2

𝑐 )
7
|] [(𝑢𝐺)𝑗+1 − (𝑢𝐺)𝑗]}

0.5 {[(𝐅𝑗+1/2
𝑐 )

3
+ (𝐅𝑗+1/2

𝑐 )
6
] [(𝑢𝐿)𝑗 + (𝑢𝐿)𝑗+1] − [|(𝐅𝑗+1/2

𝑐 )
3
| + |(𝐅𝑗+1/2

𝑐 )
6
|] [(𝑢𝐿)𝑗+1 − (𝑢𝐿)𝑗]}

𝐐6,𝑗𝑉̃
+ ((𝑢𝐿)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐵

𝐿) + 𝐐6,𝑗+1𝑉̃
− ((𝑢𝐿)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐵

𝑅)

𝐐7,𝑗𝑉̃
+ ((𝑢𝐺)𝑗 , 𝑐𝑗+1

2
, 𝜒𝐷

𝐿) + 𝐐7,𝑗+1𝑉̃
− ((𝑢𝐺)𝑗+1, 𝑐𝑗+1

2
, 𝜒𝐷

𝑅)
]
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

 

 

 

 

(4.21) 
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 For the calculation of the pressure flux, both methods, AUSMV and AUSMD, follow 

the same steps of solution. The pressure-weighted factor value is defined as 

𝑃±(𝑢𝑘, 𝑐) =

{
 

 [±
1

4𝑐
(𝑢𝑘 ± 𝑐)

2]
1

𝑐
(±2 −

𝑢𝑘
𝑐
) , 𝑖𝑓 |𝑢𝑘| ≤ 𝑐  

𝑢𝑘 ± |𝑢𝑘|

2𝑢𝑘
, otherwise.

 

 

 

(4.22) 

 

 For the 5E2P,  

𝐅
𝑗+
1
2

𝑝
=

[
 
 
 
 
 

0
0
0

𝑃+(𝑢𝐺 , 𝑐𝑗+1/2)(𝛼𝐺𝛥𝑝𝐼𝐺)𝑗 + 𝑃
−(𝑢𝐺 , 𝑐𝑗+1/2)(𝛼𝐺𝛥𝑝𝐼𝐺)𝑗+1

𝑃+(𝑢𝐿 , 𝑐𝑗+1/2)(𝛼𝐿𝛥𝑝𝐼𝐿)𝑗 + 𝑃
−(𝑢𝐿 , 𝑐𝑗+1/2)(𝛼𝐿𝛥𝑝𝐼𝐿)𝑗+1 ]

 
 
 
 
 

. 

 

 

(4.23) 

 

 And for the 7E2P,  

𝐅
𝑗+
1
2

𝑝

=

[
 
 
 
 
 
 

0
0
0

𝑃+(𝑢𝐺 , 𝑐𝑗+1/2)[(𝛼𝐺 + 𝛼𝐷)𝛥𝑝𝐼𝐺]𝑗 + 𝑃
−(𝑢𝐺 , 𝑐𝑗+1/2)[(𝛼𝐺 + 𝛼𝐷)𝛥𝑝𝐼𝐺]𝑗+1

𝑃+(𝑢𝐿, 𝑐𝑗+1/2)[(𝛼𝐿 + 𝛼𝐵)𝛥𝑝𝐼𝐿]𝑗 + 𝑃
−(𝑢𝐿, 𝑐𝑗+1/2)[(𝛼𝐿 + 𝛼𝐵)𝛥𝑝𝐼𝐿]𝑗+1

0
0 ]

 
 
 
 
 
 

. 

 

 

 

 

(4.24) 

 

 The AUSMDV method is a balance between the previous defined methods, AUSMV 

and AUSMD. Thus, the convective fluxes are weighted by a parameter, ss, as follows 

 

𝐅
𝑗+
1
2

AUSMDV,𝑐 = 𝑠𝑠𝐅
𝑗+
1
2

AUSMV,𝑐 + (1 − 𝑠𝑠)𝐅
𝑗+
1
2

AUSMD,𝑐. (4.25) 

  

 It is worth mentioning that the pressure flux remains the same for the AUSMDV 

method, calculated according to Eqs. (4.22), (4.23) and (4.24). According to Evje and 

Flätten (2003), the parameter ss can be defined in many ways and depends on the problem 

that is being solved. For single phase cases, for instance, Wada and Liou (1997) suggested 

that this parameter was a function of the local pressure. For two-phase flow, other 
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possibilities could be adopted, however, as this is a problem-dependent parameter, it will 

be left open to be determined in the results section of this work. 

 

4.2.3 Discretization of the Non-Conservative Term  

 

 The non-conservative term in Eq. (4.9) is discretized using a particular numerical 

scheme, called second-order Minmod that was proposed by Harten (1983) and used by 

Omgba-Essama (2004), Figueiredo et al. (2017) and Sondermann et al. (2019). This 

methodology can be expressed as 

 

(𝐇
𝜕𝐍

𝜕𝑥
)
𝑗

𝑛

=
𝐇𝑗
𝑛

𝛥𝑥
𝑚(𝐱, 𝐲, 𝐳), 

 

(4.26) 

 

where 𝐇𝑗
𝑛 = 𝐇(𝐖𝑗

𝑛) and the 𝑚(𝐱, 𝐲, 𝐳) is the Minmod function defined as 

 

𝑚(𝐱, 𝐲, 𝐳) ≡ {
𝑠min{|𝐱|, |𝐲|, |𝐳|} ,  if sgn( 𝐱) = sgn( 𝐲) = sgn( 𝐳) = 𝑠

0,                             otherwise,
 

(4.27) 

 

with  

 

𝒙 ≡ 2(𝐍𝑗+1
𝑛 − 𝐍𝑗

𝑛),𝒚 ≡
1

2
(𝐍𝑗+1

𝑛 − 𝐍𝑗−1
𝑛 ),𝒛 ≡ 2(𝐍𝑗

𝑛 − 𝐍𝑗−1
𝑛 ). (4.28) 

 

 All terms in the equations above must be interpreted componentwise. Other simpler 

forms of discretization can also be implemented, such as centered discretization, 

according to Paillère et al. (2003), or even the first order Minmod as suggested by Coquel 

et al. (1997), although less accurate. 

 

4.3 Roe Method 

 

 The Roe method has a different structure from the other methods detailed in the 

previous section. It is widely reported in the literature for being an approximate Riemann 

solver and for presenting interesting results when capturing discontinuities and showing 
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accuracy in the solution, although it requires a longer computational time than the other 

methods already presented. 

 

4.3.1 General Formulation of the Roe Method 

 

 To solve the system of partial differential equations using the Roe method, it is 

necessary to write it in a conservative form, 

 

𝜕𝐐

𝜕𝑡
+
𝜕𝐅(𝐐)

𝜕𝑥
= 𝐒(𝐐), 

(4.29) 

 

where, as already described, Q is the conservative variables vector, F(Q) is the flux vector 

and S(Q) is the source term vector. Unfortunately, for the models studied in this work, it 

cannot be done due to the pressure terms in the momentum equations, Eqs. (3.4 – 3.5) 

and Eqs. (3.14 – 3.15), as also pointed out by Munkejord (2005) and Ferrari et al. (2017). 

It is worth mentioning that for the AUSM-type methods, those terms are considered non-

conservative terms, as presented in Eq. (4.1). However, with the Roe method, these terms 

must be incorporated in the conservative form, as Eq. (4.29). Therefore, to use the Roe 

method, the systems of equations must be rewritten in quasi-linear form 

 

𝜕𝐐

𝜕𝑡
+ 𝐀(𝐐)

𝜕𝐐

𝜕𝑥
= 𝐒(𝐐). 

 

(4.30) 

 

 Appendix A of this work presents a detailed calculation procedure to obtain the matrix 

A. It can be written, for the 5E2P model, as 

 

𝐀(𝐐) =

[
 
 
 
 

𝑢𝐼 0 0 0 0
0 0 0 1 0
0 0 0 0 1

𝛥𝑝𝐼𝐺 − 𝜌𝐺𝑐𝐺
2 𝑐𝐺

2 − 𝑢𝐺
2 0 2𝑢𝐺 0

−𝛥𝑝𝐼𝐿 + 𝜌𝐿𝑐𝐿
2 0 𝑐𝐿

2 − 𝑢𝐿
2 0 2𝑢𝐿]

 
 
 
 

. 

 

 

(4.31) 

 

The eigenvalues are analytical expressions, given by: 𝜆1 = 𝑢𝐼, 𝜆2 = 𝑢𝐺 − 𝑐𝐺, 𝜆3 = 𝑢𝐺 +

𝑐𝐺, 𝜆4 = 𝑢𝐿 − 𝑐𝐿 e 𝜆5 = 𝑢𝐿 + 𝑐𝐿. The eigenvectors of matrix A, with the right 
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eigenvectors, R, in columns, and matrix 𝐑−𝟏, the inverse matrix of R, are also presented 

in Appendix A. 

 For the 7E2P model, the same calculation procedure is performed, returning larger 

matrices, that are also detailed in Appendix A. Defining 𝑋 ≡ 𝑐𝐺
2𝛼𝐷𝜌𝐺 + 𝑐𝐿

2𝛼𝐺𝜌𝐿, 

𝑌 ≡ 𝑐𝐺
2𝛼𝐿𝜌𝐺 + 𝑐𝐿

2𝛼𝐵𝜌𝐿, 𝑍 ≡ 𝑐𝐺
2𝑐𝐿
2(𝛼𝐷 + 𝛼𝐺) and 𝐾 ≡ 𝑐𝐺

2𝑐𝐿
2(𝛼𝐵 + 𝛼𝐿) the Jacobian 

matrix for the 7E2P model is obtained 

 

𝐀(𝐐) = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑢𝐼 0 0 0 0 0 0

0
𝛼𝐷𝑢𝐺𝜌𝐿

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿
0

𝛼𝐺𝜌𝐺
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

0 0 −
𝛼𝐺𝑢𝐺𝜌𝐺

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

0 0
𝛼𝐵𝑢𝐿𝜌𝐺

𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺
0

𝛼𝐿𝜌𝐿
𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺

−
𝛼𝐿𝑢𝐿𝜌𝐿

𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺
0

𝛥𝑝𝐼𝐺 −
𝑍𝜌𝐿𝜌𝐺
𝑋

𝑍𝜌𝐿
𝑋
− 𝑢𝐺

2 0 2𝑢𝐺 0 0
𝑍𝜌𝐺
𝑋
− 𝑢𝐺

2

−𝛥𝑝𝐼𝐿 +
𝐾𝜌𝐿𝜌𝐺
𝑌

0
𝐾𝜌𝐺
𝑌

− 𝑢𝐿
2 0 2𝑢𝐿

𝐾𝜌𝐿
𝑌
− 𝑢𝐿

2 0

0 0 −
𝛼𝐵𝑢𝐿𝜌𝐺

𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿
0

𝛼𝐵𝜌𝐺
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

𝛼𝐿𝑢𝐿𝜌𝐿
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

0

0 −
𝛼𝐷𝑢𝐺𝜌𝐿

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿
0

𝛼𝐷𝜌𝐿
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

0 0
𝛼𝐺𝑢𝐺𝜌𝐺

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

 

 

 

(4.32) 

 

 

The eigenvalues of the matrix A are: 𝜆1 = 𝑢𝐼, 𝜆2 = 𝑢𝐺 , 𝜆3 = 𝑢𝐿, 𝜆4 = 𝑢𝐺 −

√
𝑐𝐺
2𝑐𝐿
2(𝛼𝐷+𝛼𝐺)2𝜌𝐿𝜌𝐺

(𝛼𝐺𝜌𝐺+𝛼𝐷𝜌𝐿)𝑋
, 𝜆5 = 𝑢𝐺 +√

𝑐𝐺
2𝑐𝐿

2(𝛼𝐷+𝛼𝐺)2𝜌𝐿𝜌𝐺

(𝛼𝐺𝜌𝐺+𝛼𝐷𝜌𝐿)𝑋
, 𝜆6 = 𝑢𝐿 −√

𝑐𝐺
2𝑐𝐿
2(𝛼𝐵+𝛼𝐿)2𝜌𝐿𝜌𝐺

(𝛼𝐵𝜌𝐺+𝛼𝐿𝜌𝐿)𝑌
 𝑒 𝜆7 =

𝑢𝐿 +√
𝑐𝐺
2𝑐𝐿

2(𝛼𝐵+𝛼𝐿)2𝜌𝐿𝜌𝐺

(𝛼𝐵𝜌𝐺+𝛼𝐿𝜌𝐿)𝑌
. 

 

 With the determination of the matrices A for the 5E2P and 7E2P models, an explicit 

discretization of Godunov’s method with a high-resolution extension is written, according 

to LeVeque (2004), as follows 

 

𝐐𝑗
𝑛+1 = 𝐐𝑗

𝑛 −
𝛥𝑡

𝛥𝑥
[∑(𝜆𝑗+1/2

𝑝 )−𝒘𝑗+1/2
𝑝

𝑚

𝑝=1

+∑(𝜆𝑗−1/2
𝑝 )+𝒘𝑗−1/2

𝑝

𝑚

𝑝=1

]

−
𝛥𝑡

𝛥𝑥
[𝐅̃
𝑗+
1
2

𝑛 − 𝐅̃
𝑗−
1
2

𝑛 ]. 

 

 

(4.33) 

 

where p is the number of eigenvalues, 1 ≤ 𝑝 ≤ m, for a given hyperbolic system and m 

is total number of eigenvalues, which is equals to the number of equations of the 

mathematical model. The components of the vector 𝒘𝑗−1/2
𝑝

 represents the waves crossing 
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the cell’s interface and 𝜆𝑗−1/2
𝑝

 are the characteristic velocities of the wave of number p, in 

which 

 

𝒘𝑗−1/2
𝑝 = β𝑗−1/2

𝑝 𝒓𝑗−1/2
𝑝 . 

 

(4.34) 

 

where 𝒓𝑗−1/2
𝑝

 are the right eigenvectors written as columns and the term β𝑗−1/2
𝑝

 is defined 

as 

 

β𝑗−1/2
𝑝 = 𝐑𝑗−1/2

−𝟏 (𝐐𝑗 − 𝐐𝑗−1). (4.35) 

 

 The term (𝜆𝑗−1/2
𝑝

)± with positive or negative indexes in Eq. (4.33) is interpreted 

according to 

 

(𝜆𝑗−1/2
𝑝 )±  =

1

2
(𝜆𝑗−1/2

𝑝 ± |(𝜆𝑗−1/2
𝑝 )| ). 

(4.36) 

 

 The flux vector, 𝐅̃
𝑗−

1

2

𝑛 , is the high-resolution correction, as defined by LeVeque (2004), 

and it is a function of the eigenstructure of A and of the flux limiter ф(Ѱ𝑗−1/2
𝑝

),  

 

𝐅̃
𝑗−
1
2

𝑛 =
1

2
∑|(𝜆𝑗−1/2

𝑝 )| (1 −
𝛥𝑡

𝛥𝑥
|(𝜆𝑗−1/2

𝑝 )|)ф(Ѱ𝑗−1/2
𝑝 )𝒘𝑗+1/2

𝑝

𝑚

𝑝=1

. 

 

(4.37) 

 

 The high-resolution term is a way to guarantee accuracy and, at the same time, avoid 

numerical oscillations to be introduced in the solution. The flux limiter can be defined, 

according to LeVeque (2004), based on the following expression 

 

Ѱ
𝑗−
1
2

𝑝
=
𝛽𝐽−1/2
𝑝

β𝑗−1/2
𝑝  , with  J = {

𝑗 − 1 𝑠𝑒 𝜆
𝑗−
1
2

𝑝
> 0

𝑗 + 1 𝑠𝑒 𝜆
𝑗−
1
2

𝑝
< 0

. 

 

(4.38) 

  



49 

 

The function ф can be calculated by the van Leer (1974) limiter, as an example, as used 

by Santim and Rosa (2015), 

 

ф(Ѱ) =
Ѱ + |Ѱ|

1 + |Ѱ|
. 

(4.39) 

 

4.3.2 Roe Linearization 

 

 The Roe linearization is detailed in LeVeque (2004) to define the approximate 

Riemann solution. The quasi-linear form described by Eq. (4.30) is replaced by a 

linearized problem defined at each cell interface. 

 

𝜕𝐐̂

𝜕𝑡
+ 𝐀̂𝑗−1/2

𝜕𝐐̂

𝜕𝑥
= 0. 

(4.40) 

 

 The Roe matrix, 𝐀̂𝑗−1/2 is an approximation of the matrix A at the cell interface (𝐐𝑗−1 

and 𝐐𝑗) that must satisfy the following conditions, according to LeVeque (2004) 

• it must be diagonalizable with real eigenvalues to guarantee hyperbolicity; 

• 𝐀̂
𝑗−

1

2

(𝐐𝑗−1, 𝐐𝑗) → 𝐀(𝐐̅) as 𝐐𝑗−1, 𝐐𝑗 → 𝐐̅ to make the method consistent with the 

original conservation law, Eq. (4.30); 

• 𝐀̂
𝑗−

1

2

(𝐐𝑗−1,𝐐𝑗) = 𝐅 (𝐐𝑗) − 𝐅 (𝐐𝑗−1) to ensure that the method is conservative. 

 

 The matrix 𝐀̂𝑗−1/2 must be defined satisfying the above conditions, such that 

 

𝐀̂𝑗−1/2 = 𝐀(𝐐̂𝑗−1
2
), (4.41) 

 

where 𝐐̂𝑗−1/2 is an average between 𝐐𝑗−1 and 𝐐𝑗. Munkejord (2005) and Evje and Flätten 

(2003) and Ferrari et al. (2017) used the average state of 𝐐̂𝑗−1/2 and proved that the above 

conditions are satisfied. This average state is defined as 
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𝑢̂ =
𝑢𝑗−1√(𝛼𝜌)𝑗−1 + 𝑢𝑗√(𝛼𝜌)𝑗

√(𝛼𝜌)𝑗−1 +√(𝛼𝜌)𝑗
, 

(4.42) 

 

𝛼̂ =
1

2
(𝛼𝑗−1 + 𝛼𝑗), 

(4.43) 

 

𝜌̂ =
1

2
(𝜌𝑗−1 + 𝜌𝑗), 

(4.44) 

 

𝛥𝑝̂ =
1

2
(𝛥𝑝𝑗−1 + 𝛥𝑝𝑗), 

(4.45) 

 

𝑢𝐼̂ =
1

2
(𝑢𝐼𝑗−1 + 𝑢𝐼𝑗). 

(4.46) 

 

 The Eqs. (4.42 – 4.46) are used as coefficients of the matrix in Eq. (4.31) for the 5E2P 

model and Eq. (4.32) for the 7E2P model and, consequently, in matrices R and 𝐑−𝟏, that 

are detailed in Appendix A. The linearized Roe matrices and their respective eigenvalues 

and eigenvectors are used in the Godunov method for the solution of the problem. 

 

4.4 Imposition of Boundary Conditions 

 

 As reported in chapter 3, a hyperbolicity analysis of the mathematical model under 

the flow conditions is necessary in order to determine the number of boundary conditions 

that should be prescribed in each boundary at every time step in an initial-boundary-value 

problem. According to Jeffrey (1976), the hyperbolicity analysis is local in each boundary 

and the number of prescribed conditions is a function of the number of characteristics that 

emanate from the boundary into the domain. For the 5E2P model, five characteristics are 

obtained from the hyperbolicity analysis, whereas for the 7E2P, they are seven. In both 

mathematical models, two negative characteristics are derived in each boundary and the 

remaining ones are positive. At the inlet, the positive characteristics emanate into the 

domain and, therefore, three, or five, boundary conditions are imposed, for the 5E2P and 
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7E2P models, respectively. On the other hand, the two negative characteristics at the 

outlet are the ones that emerge into the domain and, consequently, prescribed at the outlet.  

 For cases simulated in this work, boundary conditions of the Dirichlet type for both 

inlet (x=0) and outlet (x=L) are considered. It is common in the literature, as described in 

Figueiredo et al. (2017) and Sondermann et al. (2019), to impose the pressure at the outlet 

and the other flow variables at the inlet. Therefore, fluid pressures are prescribed as outlet 

boundary conditions for the two mathematical models herein studied, while fluid 

velocities and liquid volume fraction are imposed at the inlet. For the 7E2P, as two more 

boundary conditions at the inlet are required, bubbles and droplets volume fractions are 

also prescribed. The boundary conditions are imposed at ghost cells that are added to the 

left and right boundaries. The non-prescribed values in each boundary are replications of 

the calculated values in the nearest discretized inner cell in the previous time step. The 

values set as boundary conditions at the initial time step are taken as initial conditions 

throughout the discretized domain. 
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5. Experimental Facilities 
 

 An experimental campaign was performed at the TUFFP facilities (Tulsa University 

Fluid Flow Projects) located at the University of Tulsa in Tulsa, Oklahoma, USA. Two 

different experimental facilities were used: the 4-in air-water facility and the 2-in high 

viscosity oil-air facility.  The experimental data acquired in this campaign is used as a 

validation of the results obtained with the numerical simulations. 

 

5.1 4-in Facility 
 

 This experimental facility was also used in the previous works of Roullier (2017) and 

Zhu (2019). Roullier (2017) studied the existence of slug flow in air-water two-phase 

flow in vertical pipes, whereas Zhu (2019) investigated the effect of the inclination angle 

of the pipe on the transition from slug flow to churn/pseudo-slug flows. The test section 

of this facility is made of polycarbonate and consists of a loop that has an upward and a 

downward pipe connected. This flow loop can be inclined ranging from horizontal to 

almost 90° and the fluids used in the system are water and air that are mixed at the inlet 

of the flow loop. Pictures of the 4-in facility are presented in Fig. 4.  

 

      

Figure 4: Pictures of the 4-in facility. 
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 The liquid delivery system of this facility is composed of two centrifugal pumps, 

running in parallel, that drives the water from a water tank, a mass flowmeter, pressure 

and temperature transmitters, and an automatic control valve to adjust the flow rate with 

a bypass, controlled by a manual valve, that is used to empty the system whenever it is 

necessary. The gas delivery system has a similar configuration. The air, however, is 

delivered by a centralized air compressor (Gardner Denver with discharge pressure at 100 

psig), whose pressure is measured before enters the system. At the inlet of the test section, 

both delivery systems are connected, and the fluids are mixed. At the end of the test 

section, there is a U-shape hose that bridges the upward (test section) and downward 

(returning section) of the flow loop. The test section has three trapping segments 

separated by quick closing valves (QCVs, for short) and instrumented with differential 

pressure transducers. In the first trap section there are a pair of conductivity sensors and 

a temperature transmitter, whereas in the second one, there are another pair of 

conductivity sensor and a pressure transmitter. In the third and last trap, the Wire-Mesh 

sensor is installed, to guarantee that the flow is fully developed. At the very outlet of the 

test section, there is a pressure transmitter to monitor the pressure and, consequently, keep 

it under control by an automatic control valve. The return section of this flow loop is 

made of steel, there is no instrumentation, and the diameter has 3-in.  

 

5.1.1 Flow Loop Instrumentation 

 

 The test section of the flow loop is equipped with measuring instruments that are able 

to provide the necessary information to obtain the flow parameters. Figure 5 presents the 

schematic of the experimental facility, not in full-scale, indicating the main 

instrumentation in the test section. 
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Figure 5: Schematic of the 4-inch facility. 

 

 The basic instrumentation is detailed as follows. 

• Differential Pressure Transducer (DP): 

 The DP sensors are used to measure the pressure drop during the tests. There are three 

DPs in the test section, one in each trap. The trap sections are located between the Quick 

Closing Valves (QVC) that are used to quickly retain the flow whenever is needed. For 

pressure drop measurements on each trap,  

 

DP = (DP𝑡𝑒𝑠𝑡 − DP𝑒𝑚𝑝𝑡𝑦), 
 

(5.1) 

 

and 

 

𝑑𝑝

𝑑𝐿
)
𝑒𝑎𝑐ℎ 𝐷𝑃

=
DP

𝐿𝐷𝑃
, 

 

(5.2) 

 

where DP is the corrected pressure difference in Pa, DP𝑡𝑒𝑠𝑡 is the pressure difference 

acquired from data recorded with the LabVIEW under continuous flow conditions, 

already converted to Pa, and DP𝑒𝑚𝑝𝑡𝑦 is the pressure difference that is measured when the 

pipe is empty with the same inclination angle of the test. 𝐿𝐷𝑃 is the length of the DP 

sensor. The sample frequency is 5Hz and the DP range for each inclination angle is 
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detailed in Table 1. Verification of the DP sensors in single-phase flow are presented in 

Appendix B. 

Table 1: DP span for each inclination angel. 

Angle (°) DP span (inH2O) 

2    -10 to 10 

5 -15 to 10 

15 -30 to 10 

20 -40 to 10 

30 -50 to 10 

 

 To calculate the average pressure gradient, it is necessary to use the information of all 

the trap sections, according to the following expression 

 

𝑑𝑝

𝑑𝐿
)
𝑎𝑣
=
1

3
∑

𝑑𝑝

𝑑𝐿
)
𝑒𝑎𝑐ℎ

. 

 

(5.3) 

   

• Pressure and Temperature Transmitters (PT/TT): 

 Two pressure and one temperature sensors are installed to measure pressure and 

temperature along the pipeline. The PTs are located in the second trap and at the end of 

the test section, while the TT is in the first trap, as illustrated by Fig. 5. 

 

• Flowmeter: 

 Two Coriolis flowmeters (E-H™ Promass 83F) are installed in the liquid and gas 

deliveries systems to measure the gas and liquid mass flow rates, respectively. With that 

information, in addition to pressure and temperature values, the superficial velocities can 

be calculated. 

 

• Conductivity Sensors (CS):  

 Two pairs of conductivity sensors are installed in order to obtain the slug flow 

characteristics. The measurement is based on the conductivity difference of the fluids, 

which means that whenever the sensor is submerged in water, the conductivity data 

furnishes the maximum voltage, 𝑉𝑚𝑎𝑥, while with an empty pipe it has its minimum 
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voltage, 𝑉𝑚𝑖𝑛. The data acquisition frequency of these sensors is 1000 Hz. The normalized 

output voltage, 𝑉𝑛𝑜𝑟𝑚, is calculated as 

 

𝑉𝑛𝑜𝑟𝑚 =
𝑉𝑡𝑒𝑠𝑡 − 𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

, 

 

(5.4) 

 

 where 𝑉𝑡𝑒𝑠𝑡 is the data obtained when the fluids are flowing. In the case of slug flow, for 

example, the conductivity data can be used to obtain slug characteristics, such as slug 

frequency and translational velocity.  

 

• Wire Mesh Sensor (WMS) 

 The WMS is an intrusive instrumentation that measures the instantaneous 

distributions of the phases in two-phase flows. It consists of two planes of wire electrodes, 

transmitter and receiver planes. The wires on each plane are parallel to each other and 

separated by a few millimeters whereas the wires of the two planes cross each other 

perpendicularly. The number of wire-crossing points may vary, and for this study it is 

32x32. The measurements of the phase distributions are taken at these crossing points by 

measuring the electrical conductivity for conducting fluids and permittivity for non-

conducting fluids.  The WMS used in this study, constructed by HZDR in Germany, has 

a pair of 32x32 conductivity wires and the data acquisition frequency was 2500 Hz. In 

the work of Fan (2017), more information on the WMS is provided. This sensor is capable 

of offering the liquid holdup measurement, and this information can be used to calculate 

slug characteristics.  

 

5.1.2 Test Matrix 

 

 The test matrix combines all the experimental campaign performed in the 4-in  

facility. Five inclination angles were investigated from 2° to 30° under a pressure of 65 

psig measured close to the end of the test section. Several inclinations and superficial gas 

and liquid velocities were tested, as presented in Table 2.  
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Table 2: Test Matrix for the 4-in facility. 

Inclination Angles 2°, 5°, 15°, 20° and 30° 

𝑢𝑆𝐿 0.05 m/s 

𝑢𝑆𝐺  From 0.27 m/s to 1.08m/s 

Pressure 65 psig 

 

 

5.2 2-in Facility 
 

 The test section of this flow loop has an internal diameter of 2-in and is located in an 

indoor facility where room temperature is controlled by an air conditioning system to 

minimize the heat transfer with the environment. Figure 6 is a picture of the experimental 

facility. 

 

 

Figure 6: Picture of the 2-in facility. 

 

 The fluids present in this facility are a high viscosity oil (Synthetic oil – ISO VG 320) 

and air. The oil is stored in a tank and its viscosity is controlled by adjusting the liquid 

temperature inside the tank with a 20-kW Chromalox heater. The oil temperature is 

measured during the experiments to keep the desired temperature and viscosity. The liquid 

system is pumped by a 20HP screw pump and the gas is delivered by the same air 

compressor that was used in the 4-in facility. This flow loop is fixed in the horizontal 

position for this study and the fluids are mixed at a “Y-2” tee junction before entering the 

test section, as can be seen in Fig. 7. An acrylic plate is located at one-quarter of the pipe 
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diameter from the top to guarantee that both fluids are separated in the beginning of the 

pipe. More information regarding the mixing entrance of the fluids in this facility are 

presented by Kim (2019) and Brito (2012). The return pipe of this flow loop has 3-in of 

internal diameter and is connected by a flexible hose. At the end of the pipeline, the fluids 

are separated by gravity, and the liquid is stored in the tank and the air is vented to the 

atmosphere. 

 

Figure 7: Picture of the inlet of the 2-in facility. 

 

5.2.1  Flow Loop Instrumentation 

 

 The instrumentations present in this experimental facility are like the ones in the 4-in 

facility, as can be verified in the schematic in Fig. 8. The temperature (measured by 

Resistance Temperature Detectors - RTD), pressure and DP’s sensors have data 

acquisition frequency of 25 Hz. The DP range is -50 to 250 inH2O and the single-phase 

test verification of the instrumentation is presented in Appendix B. The flow loop is 

equipped with mass flow meters (Micro Motion™) and three pairs of capacitance sensors 

and quick closing valves. Capacitance sensors, with 2000 Hz of data sampling frequency, 

are used to analyze the slug characteristics in the same way that the conductive sensors 

already detailed in the previous section.  
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Figure 8: Schematic of the 2-inch facility. 

 

5.2.2 Test Matrix 

 

 The experiments that were run in the 2-in facility aim at investigating the flow 

behavior in a horizontal pipeline under laminar conditions using high viscosity oil and 

air. This high viscosity oil is operated at a temperature of 70°F with viscosity of 0.68 Pa.s. 

The oil tank is open to the atmosphere and the oil density is 849.92 kg/m³, as previous 

studies performed by Kim (2019). Table 3 summarizes the flow conditions that were 

investigated.  

 

Table 3: Test Matrix for the 2-in indoor facility. 

Inclination Angles Horizontal 

𝑢𝑆𝐿 From 0.1 m/s to 0.4 m/s 

𝑢𝑆𝐺  From 0.08 m/s to 0.6 m/s 

Pressure Open to atmosphere 

Temperature 70°F 
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6. Numerical Results for Benchmark Problems  
 

 The results of this work are divided into two chapters. The first chapter presents the 

results of several numerical simulations of classical benchmark problems performed to 

validate the algorithm and the code here developed to simulate slug flows. The second 

one describes the numerical results of the slug-capturing simulations and a comparison 

with the experiments carried out at the TUFFP facilities, at the University of Tulsa. 

 In this first chapter, a numerical study based on the numerical solution of three 

benchmark problems is presented to analyze the behavior of the mathematical models and 

numerical methods in different flow scenarios. Then, an accuracy check of the AUSM-

type method is performed for a stratified flow simulation for both mathematical models, 

the 5E2P and the 7E2P.  

 

6.1 Benchmark Problems 
 

 This section is dedicated to present the solution of three benchmark problems that are 

commonly used in two-phase flow simulations: the water faucet, the large relative-

velocity shock tube, and the segregation problems. Each problem has its own particularity, 

although all present a discontinuity in the flow. 

 

6.1.1 The Water Faucet Problem  

 

 The water faucet, also called gravity dominated flow, is a benchmark initial-boundary 

value problem that was first described by Ramson (1987). It consists of a vertical pipe 

that is filled with gas-liquid two-phase flow. Figure 9 is a schematical representation of 

the evolution of the flow through time. Figure 9(a) illustrates the initial condition that 

consists of a uniform flow, in which all the flow variables are constant and equal to the 

boundary conditions. With the gravitational effect, a discontinuity appears, which grows 

and travels from the inlet towards the outlet, as in Fig. 9(b). When this discontinuity leaves 

the pipe, the steady state is reached, as in the illustration in Fig. 9(c).  

 This benchmark problem has an analytical solution that is used to verify the 

performance of numerical models with respect to their capability to reproduce the physics 

of the two-phase flow. It evaluates how well the numerical methods capture and transports 
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the discontinuity due to the interactions between the body force and advective terms in 

the conservation equations, since in this problem, there is no wall and interfacial friction 

forces, and the flow is treated as isothermal. 

 

Figure 9: Water faucet problem schematic. (a) Initial uniform condition. (b) Flow 

snapshot sometime between initial and steady-state condition. (c) Steady-state 

condition. 

 The simulation set up for the water faucet is displayed in Table 4 and the boundary 

conditions for this problem are detailed in Table 5. The initial conditions are equal to the 

boundary condition uniformly replicated throughout the domain.  

Table 4: Simulation set up for the water faucet problem. 

Parameter Value 

Gravity 9.81 m/s² 

Sound speed in the liquid 1000 m/s 

Sound speed in the gas 316.2 m/s 

Reference gas density 0 kg/m³ 

Reference liquid density 1000 kg/m³ 

Pipe length 12 m 

Time (snapshot) 0.6 s 

CFL number (AUSM-type/Roe) 0.45/0.9 
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Table 5: Inlet and outlet boundary conditions for the water faucet benchmark. 

Flow Variable Value 

p at outlet (x=L) 105 Pa 

uG at inlet (x=0) 0 m/s 

uL at inlet (x=0) 10 m/s 

αG at inlet (x=0) 0.2 (-) 

 

 The analytical solution, according to Ramson (1987) and Coquel et al. (1997), for the 

void fraction and liquid velocity are 

 

𝛼𝐺(𝑥, 𝑡) = {
1 −

(𝛼𝐿𝑢𝐿)𝑥=0

√2𝑔𝑥 + (𝑢𝐿
2)𝑥=0

,        if 𝑥 ≤ 𝑥𝑑

1 − (𝛼𝐿)𝑥=0,                        otherwise.

 

 

 

 

(6.1) 

𝑢𝐿(𝑥, 𝑡) = {
√(𝑢𝐿

2)𝑥=0 + 2𝑔𝑥,           if 𝑥 ≤ 𝑥𝑑

(𝑢𝐿)𝑥=0 + 𝑔𝑡,                otherwise.

 

 

 

(6.2) 

 

where the discontinuity location, 𝑥𝑑, is given by 𝑥𝑑 ≡ (𝑢𝐿)𝑥=0𝑡 +
1

2
𝑔𝑡2.  

 Originally, this problem had no analytical solution for the gas velocity and the 

pressure fields.  The pressure variation was neglected, that is, the pressure was considered 

to be constant along the line. In the recent work of Zou et al. (2016), the authors 

complemented the analytical study of this problem that was first carried out by Ramson 

(1987) obtaining the analytical solution for the remaining variables, pressure and gas 

velocity, that are written as 

 

𝑢𝐺(𝑥, 𝑡) = {

0        , if 𝑥 ≤ 𝑥𝑑

−
1 − (𝛼𝐺)𝑥=0
(𝛼𝐺)𝑥=0

𝑔𝑡,     otherwise.
 

 

 

(6.3) 
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𝑝(𝑥, 𝑡)  

=

{
  
 

  
 (𝑝)𝑥=𝐿 −

𝜌𝐺𝑔(𝐿 − 𝑥𝑑)

(𝛼𝐺)𝑥=0
+
1

2
𝜌𝐺 (

1 − (𝛼𝐺)𝑥=0
(𝛼𝐺)𝑥=0

𝑔𝑡)

2

+

𝜌𝐺
1 − (𝛼𝐺)𝑥=0
(𝛼𝐺)𝑥=0

𝑔𝑡((𝑢𝐿)𝑥=0 + 𝑔𝑡)−𝜌𝐺𝑔(𝑥𝑑 − 𝑥), if 𝑥 ≤ 𝑥𝑑

(𝑝)𝑥=𝐿 −
𝜌𝐺𝑔(𝐿 − 𝑥)

(𝛼𝐺)𝑥=0
,                otherwise.

 

 

 

 

 

(6.4) 

 In this more recent solution, additional assumptions were made to obtain the 

analytical solution for the remaining variables. The authors considered that the pressure 

distribution was deduced from the gas perspective, since the liquid phase is in free fall 

motion and the pressure gradient in the liquid phase was neglected, assuming that the 

pressures for both phases can be different. Moreover, the gas phase was treated as 

incompressible, and the interfacial pressure was neglected. However, for the simulation 

performed in this work, the interfacial pressure terms are taken into consideration, 

keeping the consistency of the mathematical models that are herein being studied. 

Therefore, there is a slight difference between the assumptions adopted in the derivation 

of the analytical solution and the ones used to obtain the numerical results.  

 The following graphs present the results for the void fraction along the distance that 

were obtained with the 5E2P model in combination with the AUSMV, AUSMD, 

AUSMDV and Roe methods for different mesh sizes to verify how the mesh 

discretization impacts the solution. The void fraction represents the main flow variable in 

this problem, and it is the most affected by the grid refinement. The numerical simulation 

with the Roe method is divided in first and second order in spatial accuracy, with or 

without the high-resolution correction term, as presented by Eq. (4.37). In addition, as 

mentioned in chapter 4, the AUSMDV method has a parameter, ss, Eq. (4.25), that can be 

tuned to provide the best solution for each problem, and for this mesh study, ss=0.8 was 

chosen. Among all the benchmark problems, the water faucet problem was selected for 

the grid refinement study because it is the one that the mesh variation impact can be better 

visualized graphically. 

 Figures 10 to 13 show results with 100, 500, 1000, 2000, 5000, 8000 and 10000 cells 

for the AUSMDV, AUSMV, Roe first and second orders, respectively. The CFL number 

is 0.45 for the AUSM-type methods and 0.9 for the Roe simulation. Based on these 

graphs, it can be noticed that the physics of the void fraction in the water faucet problem 
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is well described, since a discontinuity is formed at the inlet, as gravity is felt by the flow, 

and travels towards the outlet as time evolves. From the numerical perspective, there is 

no doubt that the coarser meshes have more difficulty in representing the discontinuity. 

Even though the results present a diffusive effect, as the mesh is refined the discontinuity 

is captured more accurately.  

 

 

Figure 10: Void fraction distribution along the line for the 5E2P model for the grid 

refinement study of the water faucet problem at t=0.6s with the AUSMDV 0.8 method. 

 

 

Figure 11: Void fraction distribution along the line for the 5E2P model for the grid 

refinement study of the water faucet problem at t=0.6s with the AUSMV method. 
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Figure 12: Void fraction distribution along the line for the 5E2P model for the grid 

refinement study of the water faucet problem at t=0.6s with the Roe first order method. 

 

 

Figure 13: Void fraction distribution along the line for the 5E2P model for the grid 

refinement study of the water faucet problem at t=0.6s with the Roe second order 

method. 

 

 Taking as an example Fig. 10, AUSMDV solution, the highest void fraction value 

obtained with 10000 cells is 4.6% away from the analytical solution. Following the same 

calculation, with 8000 cells is 5.03%, 5000 cells is 6.03% and 2000 is 8.65% away from 

the reference solution. All other meshes are more than 10% distant from the analytical 

solution: 11.06% with 1000 cells, 13.88% with 500 cells and 23.7% with 100 cells. 
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Solutions with 10000, 8000 and 5000 cells are accurate and computationally expensive, 

especially with the Roe method. On the other hand, solutions with 2000 cells are also 

accurate and not so much computationally demanding, which are important facts to be 

considered in simulations that require longer time duration, such as slug capturing. Thus, 

to have accurate results in less time, all the simulations are performed with 2000 cells 

from this point on. 

 To analyze the water faucet problem in a systematic way, all the flow variables are 

examined by means of the 5E2P model for each numerical method in Figs. 14 to 17. The 

AUSMDV tuning parameter quantifies how close to the AUSMV and the AUSMD 

methods the solution is to have an optimized balance of both techniques. The values of 

0.2, 0.5 and 0.8 are analyzed for the ss parameter. With 𝑠𝑠 = 0.2 the solution approaches 

AUSMD, with 𝑠𝑠 = 0.8 the solution goes towards AUSMV, and 𝑠𝑠 = 0.5 is in the middle 

of both methods. 

 

 

Figure 14: Void fraction distribution along the line for the 5E2P model for the water 

faucet problem at t=0.6s. 
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Figure 15: Liquid velocity distribution along the line for the 5E2P model for the water 

faucet problem at t=0.6s. 

 

 

Figure 16: Gas velocity distribution along the line for the 5E2P model for the water 

faucet problem at t=0.6s. 
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Figure 17: Pressure distribution along the line for the 5E2P model for the water faucet 

problem at t=0.6s. 

   

 Figures 14 to 17 present graphs for the void fraction, liquid and gas velocities, and 

pressure respectively, plotted against the distance along the pipe and compared to the 

analytical solution. In Fig. 14, the void fraction graph shows the discontinuity at time 

0.6s. The initial condition is propagated along the line downstream of the discontinuity, 

separating this part of the flow from the upstream flow that seeks to accommodate in a 

steady-state condition. As the liquid is accelerated due to the action of gravity, as shown 

in Fig. 15, the liquid holdup decreases to conserve mass and, therefore, the void fraction 

increases upstream of the discontinuity. Again, in order to conserve mass, gas flows from 

the outlet towards the inlet (Fig. 16). This expected behavior can be verified in Fig. 16, 

where the gas velocity is negative downstream of the discontinuity. The pressure 

distribution, on the other hand, shows a hydrostatic increase downstream of the 

discontinuity and a smoother increase upstream of the discontinuity, as depicted in Fig.17, 

due to the gas phase. Even though there are small discrepancies in the pressure results, 

they are explained by the differences that exist in the model and in the assumptions made 

to get the analytical solution. It is worth mentioning that the differences are very small, 

representing 1% relative error for the AUSMD (furthest curve) in comparison with the 

analytical solution in the highest pressure value upstream of the discontinuity. 

 The same study was performed with the 7E2P model in combination with the 

previously mentioned numerical methods. For the 7E2P model, two more variables need 

specification: the bubbles and droplets volume fraction. These variables are set at the inlet 
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as boundary conditions and are equal to 10−7, which means that small concentration of 

bubbles and droplets are being considered, and similar results from the 5E2P model are 

expected. The results are displayed in the form of graphs, according to Figs. 18 to 21. 

 

 

Figure 18: Void fraction distribution along the line for the 7E2P model for the water 

faucet problem at t=0.6s. 

 

 

Figure 19: Liquid velocity distribution along the line for the 7E2P model for the water 

faucet problem at t=0.6s. 
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Figure 20: Gas velocity distribution along the line for the 7E2P model for the water 

faucet problem at t=0.6s. 

 

 

Figure 21: Pressure distribution along the line for the 7E2P model for the water faucet 

problem at t=0.6s. 

 

 Since the bubbles and droplets volume fraction are small, similar results to the 5E2P 

model are expected and the same conclusions can be inferred. Regarding the numerical 

method comparison, the AUSMD seems to have the better agreement with the analytical 

solution, if the void fraction plot is considered. However, oscillations appear close to the 

inlet due to numerical dispersion, as can be verified in gas velocity graphs previously 

presented. The AUSMV solution is smooth and numerical oscillations were not observed. 
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The AUSMDV method, approaching the AUSMV tends to be smoother, for instance 

AUSMDV with ss = 0.5 or 0.8. The closer to the AUSMD method, more accurate seems 

to be the solution for the void fraction, however, the observed dispersive behavior near 

the inlet may cause numerical issues when used in the slug capturing simulations, whereas 

the smother ones can be a better alternative. 

 

6.1.2  The Shock Tube Problem: The Large Relative Velocity 

 

The large relative-velocity shock tube problem is a classic numerical test that was also 

investigated by many authors, such as Evje and Flätten (2003) and Ferrari et al. (2017). 

It consists of an initial-value problem in the presence of a discontinuity and is appropriate 

to determine the capability of the numerical technique to deal with initial-value problems 

that are suddenly imposed to a different state. For this case, the discontinuities are located 

at the middle of the pipe and they are associated with the gas velocity and the volume 

fraction. The simulations are carried out with a large relative velocity between phases at 

the left and right of the discontinuity, as detailed in Table 6, and the simulation set up is 

described in Table 7. This benchmark problem also has no friction terms.  

Table 6: Initial condition for the large relative-velocity shock tube benchmark. 

Flow Variable Value 

p - at left 265000 Pa 

uG - at left 65 m/s 

uL - at left  1 m/s 

αG - at left  0.29 (-) 

p - at right 265000 Pa 

uG - at right 50 m/s 

uL - at right   1 m/s 

αG - at right       0.3 (-) 
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Table 7: Simulation set up for the large relative velocity shock tube benchmark. 

Constant Value 

Pipe length 100 m 

Sound speed in the liquid 1000 m/s 

Sound speed in the gas 316.2 m/s 

Reference gas density 0 kg/m³ 

Reference liquid density 1000 kg/m³ 

Discontinuity initial location 50 m 

Pipe inclination 0 º 

Time (snapshot) 0.1 s 

CFL number (AUSM-type/Roe) 0.45/0.9 

Mesh size 2000 cells 

 

For the large-relative velocity shock tube problem, the same values for the tuning 

parameter, ss, of the AUSMDV method is used. The following graphs show a comparison 

of the results of the numerical simulation with the reference solution of Evje and Flätten 

(2003), which is also a numerical since there is no analytical solution for the shock tube 

problem in two-phase isothermal flow. Figure 22 shows the liquid volume fraction plot 

at t=0.1s. 
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Figure 22: Liquid volume fraction (holdup) distribution along the line for the 5E2P 

model for the shock tube problem at t=0.1s. 

  

 The AUSMD solution presents overshoots due to dispersive behavior in the vicinity 

of the discontinuity. Removing the AUSMD result from the holdup plot and reducing the 

x-axis scale, Fig. 23 is obtained.  

 

 

Figure 23:  Eliminating AUSMD solution and amplifying x-axis scale for the liquid 

volume fraction (holdup) distribution along the line for the 5E2P model for the shock 

tube problem at t=0.1s. 

 The liquid velocity plots are presented in Figs. 24 and 25, removing the solution 

with AUSMD in the last one. 
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Figure 24: Liquid velocity distribution along the line for the 5E2P model for the shock 

tube problem at t=0.1s. 

  

 

Figure 25: Eliminating AUSMD solution and amplifying x-axis scale for the liquid 

velocity distribution along the line for the 5E2P model for the shock tube problem at 

t=0.1s. 

 The gas velocity and the pressure are depicted in Figs. 26 and 27, as follows 
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Figure 26: Gas velocity distribution along the line for the 5E2P model for the shock 

tube problem at t=0.1s. 

 

Figure 27: Pressure distribution along the line for the 5E2P model for the shock tube 

problem at t=0.1s. 

 

 Despite the result with AUSMD method, that presents a dispersive behavior in the 

region close to the discontinuity, those graphs reveal how well the AUSMV, AUSMDV 

and Roe numerical approaches succeed in correctly reproducing the expected physical 

behavior of the flow in the presence of sharp gradients and discontinuities. As previously 

observed for the water faucet problem, as close the AUSMDV method gets to the AUSMD 

(smaller ss value), more dispersion in introduced in the solution. 
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 For the shock tube problem, the 7E2P model in combination with the numerical 

methods is simulated and the results for holdup, liquid velocity, gas velocity and pressure 

are presented in Figs. 28 to 33, respectively. Once again, two more variables need 

specification: the bubbles and droplets volume fraction. These variables are set at the inlet 

as boundary conditions and are equal to 10−7 getting similar results if compared to the 

5E2P model. Figures 29 and 31 are the plots for holdup and liquid velocity without the 

AUSMD method in order to eliminate the dispersive solution and the x-axis has a zoomed 

scale for the first one. 

 

 

Figure 28: Liquid volume fraction (holdup) distribution along the line for the 7E2P 

model for the shock tube problem at t=0.1s. 
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Figure 29: Eliminating AUSMD solution and amplifying x-axis scale for the liquid 

volume fraction (holdup) distribution along the line for the 7E2P model for the shock 

tube problem at t=0.1s. 

 

Figure 30: Liquid velocity distribution along the line for the 7E2P model for the shock 

tube problem at t=0.1s. 
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Figure 31: Eliminating AUSMD solution and amplifying x-axis scale for the liquid 

velocity distribution along the line for the 7E2P model for the shock tube problem at 

t=0.1s. 

 

Figure 32: Gas velocity distribution along the line for the 7E2P model for the shock 

tube problem at t=0.1s. 
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Figure 33: Pressure distribution along the line for the 7E2P model for the shock tube 

problem at t=0.1s. 

 

 It can be inferred from the results that all the numerical methods and mathematical 

models presented good results for the benchmark problems so far studied. The Roe 

method and the AUSM-type of methods are accurate and successfully represented the 

proposed problems. The AUSMDV deserves a more detailed study regarding the tuning 

parameter, ss. Thus, the next benchmark problem is run to better understand the impact 

that this parameter has in the solution. 

  

6.1.3  The Separation Problem 

 

 This benchmark problem was described in Coquel et al. (1997) and it consists of a 

vertical pipe that is closed at both ends. In this problem, there is no wall and interfacial 

friction forces, and the flow is treated as isothermal. Figure 34(a) illustrates the initial 

condition, in which the pipe is filled uniformly with liquid and gas and all the flow 

variables are equal and constant in all the domain. With the gravitational effect, the fluids 

tend to go separate ways, as can be seen in a snapshot in time in Fig. 34(b): the liquid 

accumulates at the bottom of the pipe and the gas, in the upper part. When both fluids are 

completely separated, as represented by Fig. 34(c), the steady state is reached. 
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Figure 34: Separation problem schematic. (a) Initial uniform condition. (b) Flow 

snapshot sometime between initial and steady-state condition. (c) Steady-state 

condition. 

The pipe configuration for this problem is described in the following Table 8. 

Table 8: Simulation set up for the separation benchmark. 

Configuration Value 

Fluids Water and Air 

Pipeline Length 7.5 m 

Liquid Reference Density 1000 kg/m³ 

Speed of Sound in Liquid 1000 m/s 

Speed of Sound in Gas 316.2 m/s 

Reference gas density 0 kg/m³ 

Reference liquid density 1000 kg/m³ 

CFL number (AUSM-type/Roe) 0.45/0.9 

Mesh size 2000 cells 

Initial gas velocity 0 m/s 

Initial liquid velocity 0 m/s 

Initial holdup 0.5 (-) 

  

The expected behavior for this problem at the steady state condition is to have both 

fluids separated, which means that the liquid volume fraction has the value of one from 

the middle to the bottom of the pipe, and zero from the top to the middle of the pipe due 

to the gas presence in this region. The pressure profile at the steady state should present 

an increase in the liquid region since the hydrostatic column has an effect in the pressure.   
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The results for the flow variables at the steady-state condition with the 5E2P model are 

displayed in Figs. 35 and 36. It is worth mentioning that the simulations of the separation 

problem with the AUSMD method could not be performed, since the dispersion took over 

the solution. In addition, with the Roe method, the dispersion close to the discontinuity 

was also an issue, presenting overshoots when the holdup value approached one. To be 

able to get a solution with this method, the CFL number had to be very small and some 

artificial control to keep the holdup value lower than one was needed. The artificial 

limitation consisted in recalculate all the flow variables, in every time the holdup value 

passed unity, based on the holdup limit number, implying in violation of mass 

conservation. Hence, the solution with Roe is not presented in the following graphs. As 

the AUSMDV ss=0.2 is closer to the AUSMD than the AUSMV, it presented very 

dispersive behavior in the pressure variable, compromising the solution, therefore, it is 

also not illustrated in the pressure graph. 

 

Figure 35: Liquid volume fraction (holdup) distribution along the line for the 5E2P 

model for the separation problem in the steady state. 
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Figure 36: Pressure distribution along the line for the 5E2P model for the separation 

problem in the steady state. 

 

It can be observed from the pressure result that the simulation using AUSMDV with 

ss=0.5 shows evidence of the initiation of the dispersive effect. The numerical results for 

the liquid volume fraction indicate that the gas is occupying the top part of the pipe and 

the liquid is accumulating in the bottom, as expected. As for the pressure distribution 

along the line, it has an increase downstream of the discontinuity, indicating the presence 

of the liquid in this region and, consequently, the hydrostatic column addition in the 

pressure.  

The same simulations were performed with the 7E2P mathematical model in 

combination with the numerical technique that are being studied in this work, and the 

results are exhibited in Figs. 37 and 38. 
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Figure 37: Liquid volume fraction (holdup) distribution along the line for the 7E2P 

model for the separation problem in the steady state. 

 

 

Figure 38: Pressure distribution along the line for the 7E2P model for the separation 

problem in the steady-state. 

 

Analyzing the results of these numerical simulations we may conclude that the 

AUSMV and AUSMDV methods are the ones that best represented the expected solution 

for both flow variables: liquid volume fraction and pressure. As the AUSMDV numerical 

technique approaches the AUSMD method, the simulation gets chaotic due to dispersion 

and as the AUSMDV method goes towards the AUSMV method, the solution is smoother. 
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The solution using AUSMDV ss=0.8 was the most successful one for both mathematical 

models, extracting the best effects in the balance between the AUSMV and AUSMD. 

The benchmark problems simulations were especially important in guiding the choice 

of the best mathematical model and numerical method combination. The presence of the 

discontinuity in all flow scenarios was crucial to identify the behavior of each model and 

method combination in solving the equations. For the slug capturing simulations, a robust 

and accurate method is desired, as well as generality of implementation and simplicity. In 

a general analysis, the AUSMDV ss=0.8 was the one that better matched the expectations. 

The results are very impressive, there is no need for characteristic analysis and the 

computational time is reduced if compared to the Roe method. In consonance with the 

benchmark study, the AUSMDV method is the most promising one to be used for the slug 

capturing simulations.  

 

6.2 Accuracy Check of the Numerical Method 
 

 The accuracy check of the numerical method AUSMDV ss=0.8 is performed based 

on the simulation of a stratified flow scenario, in which a steady state can be achieved. 

For the intermittent flow pattern, the steady state is statistical, where the flow variables 

remain changing in time intermittently. In addition, the slug capturing simulations require 

more time, which would make the simulations with the refined meshes more 

computational demanding.  

 The accuracy study has the objective to determine whether the method is first or 

second order accurate in space and its relationship with the mesh discretization. For that, 

the same code was used for different mesh sizes, ∆𝑥, keeping the same ∆𝑡 for all of them. 

For each different ∆𝑥, the CFL number changes, obeying the stability criterion for explicit 

discretization.  

 The accuracy analysis is based on the calculation of a global flow variable, the total 

momentum integrated along the domain, which combines all flow variables in one. The 

relative error is calculated according to 

 

𝜉 =
|𝑃 − 𝑃𝑟𝑒𝑓|

𝑃𝑟𝑒𝑓
, 

(6.5) 
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where 𝑃𝑟𝑒𝑓 is the momentum value for the most accurate result, which means the 

momentum result obtained with the smallest ∆𝑥 corresponds to the most refined mesh. 

For this study, results are obtained for 10000, 5000, 2000, 1000, 500 and 100 cells of 

discretization. The most refined mesh is 10000 cells, ∆𝑡 = 0.002025𝑠 for all the 

simulations and the 5E2P model was used. The initial and boundary conditions of this 

stratified case is presented in Table 10, and the pipeline configuration in Table 9, 

representing the simulation case described in Figueiredo et al. (2017). Holdup and fluids 

velocities are prescribed at the inlet and the fluids pressures are prescribed at the outlet as 

boundary conditions.  

Table 9: Flow configuration for the study of the numerical method’s accuracy. 

Configuration Value 

Fluids Oil and Gas 

Pipeline Length 45 km 

Internal Diameter 0.45 m 

Pipeline Roughness 4.57 x 10−5 m 

Liquid Reference Density 720 kg/m³ 

Speed of Sound in Liquid 900 m/s 

Speed of Sound in Gas 350.9 m/s 

Liquid Viscosity 4.4 x 10−4 Pa.s 

Gas Viscosity 1.3 x 10−5 Pa.s 

Temperature 293 K 

 

Table 10: Inlet and outlet boundary conditions for the study of the numerical method’s 

accuracy. 

Flow Variable Value 

p at outlet (x=L) 6 MPa 

uG at inlet (x=0) 4.08 m/s 

uL at inlet (x=0) 1.24 m/s 

αL at inlet (x=0) 0.088 (-) 

 

 The following figure, Fig. 39, represents the relative error as a function of the 

dimensionless number, ∆𝑥/𝐿, where L is the pipeline length. It is worth mentioning that 
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this analysis was also performed for the 7E2P model and the results obtained are 

remarkably similar and graphically, there is no difference between the curves.  

 

Figure 39: Relative error in the total momentum integrated along the pipeline as a 

function of  ∆𝑥/𝐿 for the AUSMDV ss=0.8 using 5E2P. 

 

The colored lines that appear in Fig. 39, brown and green, correspond to a first and 

second order accuracies, respectively, and are indicated to assist the identification of the 

error on a log-log plot. The results reveal that the numerical method AUSMDV behaves 

as first-order accurate. 

The same analysis was made for the AUSMV method, for the sake of curiosity, 

combined with 5E2P and 7E2P models to check if there is any major difference between 

the two numerical techniques in terms of order of accuracy in space. The results obtained 

show that both techniques have the same order of accuracy, presenting relative error as a 

function of the dimensionless number, ∆𝑥/𝐿, with the same slope, as can be seen in Fig. 

40 where the comparison is made with the 5E2P model. Once again, it is important to 

point out that the accuracy check of the AUSMV with the 7E2P model was also performed 

and returned similar results. 
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Figure 40: Relative error in the total momentum integrated along the pipeline as a 

function of  ∆𝑥/𝐿 for the AUSMV in comparison with AUSMDV ss=0.8 using 5E2P. 
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7 Numerical Results for Intermittent Flow 
 

 In this chapter, numerical simulations of intermittent two-phase flow are presented. 

First, a slug capturing simulation reported in the literature is performed in order to test 

the numerical model and check its ability to predict the transition from stratified to slug 

flow as a natural development of the flow. Then, experimental data that were obtained in 

the experimental campaign carried out at The University of Tulsa (Tulsa, Oklahoma, 

USA) is used as validation of the numerical model herein proposed herein.  

 

7.1 Comparison with Literature Results 
 

In the work of Ferrari et al. (2017), a simulation of slug formation and evolution is 

performed to verify the ability of the numerical code to predict the flow pattern transition. 

They employed a mathematical model comprised of five governing equations and two 

pressures, the 5E2P, in association with the Roe scheme. Inspired by this work, numerical 

simulations were run with the 5E2P and 7E2P models, combined with the AUSMDV 

numerical method, and the results were compared to the numerical results of Ferrari et al. 

(2017). Since Ferrari et al. (2017) used the Roe method in their simulations, simulations 

with the Roe method were also carried out and the results are also presented for this test 

case. The setup of the simulations is detailed in Table 12, and the boundary conditions 

that were prescribed for this test case are presented in Table 11. 

 

Table 11: Inlet and outlet boundary conditions for the slug formation and evolution. 

Comparison with Ferrari et al. (2017). 

Flow Variable Value 

p at outlet (x=L) 105 Pa 

uG at inlet (x=0) 4 m/s 

uL at inlet (x=0) 3 m/s 

αG at inlet (x=0) 0.5 (-) 
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Table 12: Flow configuration for slug formation and evolution. Comparison with Ferrari 

et al. (2017). 

Configuration Value 

Fluids Water and Air 

Pipeline Length 36 m 

Internal Diameter 0.078 m 

Pipeline Roughness 3.4 x 10−5 m 

Liquid Reference Density 1000 kg/m³ 

Speed of Sound in Liquid 1000 m/s 

Speed of Sound in Gas 316.2 m/s 

Liquid Viscosity 1.14 x 10−3 Pa.s 

Gas Viscosity 1.79 x 10−5 Pa.s 

CFL number (AUSM-type/Roe) 0.1/0.9 

Mesh size 2000 

Time (Snapshot) 8s 

  

 The graphs displayed in Figs. 41 to 44 present the results of the simulation with the 

5E2P model, at t=8s, for all the flow variables: holdup, gas and liquid velocities, and 

pressure, respectively. 

 

 

Figure 41: Liquid volume fraction distribution along the line for the 5E2P model for the 

slug formation and evolution test case at t=8s. 
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Figure 42: Gas velocity distribution along the line for the 5E2P model for the slug 

formation and evolution test case at t=8s. 

 

 

Figure 43: Liquid velocity distribution along the line for the 5E2P model for the slug 

formation and evolution test case at t=8s. 
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Figure 44: Pressure distribution along the line for the 5E2P model for the slug formation 

and evolution test case at t=8s. 

 

From those graphs, it can be noticed that all the numerical models were able to 

generate the slug flow from the stratified flow. Moreover, the physics is well represented, 

since when the slug is formed, the pipe cross section area is filled with liquid and the gas 

volume fraction approaches the value of zero. In summary, the results show that, when 

the slug starts to form at the beginning of the pipe, the holdup increases and, to conserve 

mass, the liquid velocity decreases, followed by an increase of the gas velocity. The 

pressure in this region decreases slowly due to friction. Downstream of this slug initiation 

region, the holdup decreases and then increases again to start another slug-formation 

wave. As a consequence, a full slug region is generated, where the holdup approaches 

unity. In this slug region, the liquid velocity increases and the slug accelerates, due to the 

large pressure difference in the slug body that balances the high friction on the wall. On 

the other hand, because the void fraction goes to zero in the slug region, the gas tends to 

accelerate in a non-physical manner. To control this unrealistic effect, the velocity 

relaxation procedure is applied during the simulation, as explained in chapter 4. 

Therefore, the gas velocity is set equal to the relaxed liquid velocity, as Figs. 42 and 43 

indicate. This approach to control the gas velocity produces more realistic physical results 

then the approach used by Ferrari et al. (2017), who set the gas velocity to zero in the 

slug region. 

Regarding the numerical approaches, the Roe method’s results are similar to the 

solution obtained by Ferrari et al. (2017), which was expected, since the authors used the 
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Roe method in their simulation. There are, nevertheless, small differences among the 

three mathematical models, which, in addition to the different treatment for the gas 

velocity, helps to explain the slight differences in the three sets of Roe’ results observed 

in the plots. However, this does not make the Roe simulation better or worse than the 

AUSMDV solution since different numerical methodologies are being compared. The 

AUSMDV is advantageous in terms of the numerical structure of the method and 

computational time, as already mentioned. When the four sets of results are considered, 

the differences observed for the gas velocity and, consequently, the other flow variables 

are related to the different mathematical models, numerical methods, and procedures to 

calculate the gas phase in the slug body.  

The same test case was run using the 7E2P model and the results are presented in 

Figs. 45 to 48. These graphs confirm that the 7E2P and 5E2P models return similar results 

for the studied cases. The 7E2P model was originally conceived as an attempt to improve 

the physics and free the mathematical model from its limitations regarding the artificial 

control of the volume fractions when one of the phases vanishes. As the model requires, 

the liquid and gas volume fractions must be within the open interval between zero and 

one. However, in the slug region for instance, the void fraction tends to zero, creating a 

singularity in the gas momentum equation. With the improvement in the slug-flow 

physics due to the addition of bubbles in the liquid phase and droplets in the gas phase, it 

was at first believed that the 7E2P model would be able to guarantee that the gas phase 

(or the liquid phase) would never vanish. From the study dedicated to this model, it was 

verified that this limitation of the two-fluid model was not fully eliminated and, for the 

slug capturing simulations, it did not reveal significant advantage over the 5E2P model, 

at least for the cases and the flow conditions considered. Table 13 presents the 

computational time required for this slug flow simulation considering each model and 

method combination. The configuration of the computer that was used for this study is 

Intel® Core ™ i7-8700 CPU 3.70GHz and in order to have a fair comparison in terms of 

CPU time, the simulations were run with CFL number of 0.45. Based on that analysis, 

the following results that shows a comparison with experimental data are performed only 

with the 5E2P model, since it ends up being less computationally demanding for having 

less equations to be solved. The 7E2P might be more suitable in more complex flow 

scenarios, such as the ones that droplets and bubbles have a more significant impact in 

the flow and/or with mass transfer terms added to the equations. 
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Figure 45: Liquid volume fraction distribution along the line for the 5E2P model for the 

slug formation and evolution test case at t=8s. 

 

 

Figure 46: Gas velocity distribution along the line for the 5E2P model for the slug 

formation and evolution test case at t=8s. 
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Figure 47: Liquid velocity distribution along the line for the 5E2P model for the slug 

formation and evolution test case at t=8s. 

 

 

Figure 48: Pressure distribution along the line for the 5E2P model for the slug formation 

and evolution test case at t=8s. 
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Table 13: CPU time analysis for each model and method combination. 

Model and Method CPU Time 

5E2P AUSMDV     2014.41 s 

7E2P AUSMDV 3195.75 s 

5E2P Roe (1rst order) 2805.36 s 

7E2P Roe (1rst order) 5998.82 s 

5E2P Roe (2nd order) 4131.57 s 

7E2P Roe (2nd order) 8502.21 s 

 

7.2 Comparison with Experimental Data 
 

An experimental campaign was carried out at the University of Tulsa (Tulsa, OK, 

USA) in order to validate the proposed numerical model in simulating the intermittent 

flow pattern. The validation of the simulated results is performed comparing slug 

characteristics of each flow scenario.  

To better understand and interpret the results that follow, some pieces of information 

regarding the numerical simulations are important to be highlighted in the list below. 

• Only the 5E2P model in association with the AUSMDV ss=0.8 is used. 

• Aiming at improving even further the physics embedded in the model, the velocity 

relaxation procedure was replaced, in the simulations that follows, by the 

Harmarthy (1960) correlation, given by Eq. (3.76). This equation is used to model 

the gas velocity in the slug body for all the simulations in the study described next. 

The motivation for employing this model lies in the experimentally observed fact 

that there is an actual slip between the gas bubbles and the liquid phase in the slug 

region.  

• Taitel and Dukler (1976) friction correlation, Eq. (3.47), is used to model the gas 

friction with the wall and the interfacial friction. For the liquid friction with the 

wall, the correlation of Spedding and Hand (1997), Eq. (3.49), is implemented. 

• The liquid volume fraction is a boundary condition that is prescribed at the pipe 

inlet in the numerical simulations. There is a certain difficulty in measuring liquid 

volume fraction experimentally at the inlet because of the mixing region of the 

fluids at this position. It is known that the superficial velocities are the important 

parameters of the flow, which means that the liquid volume fraction itself should 
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not affect the flow characteristics. Thus, a guess of the void fraction is determined 

from a relationship that expresses an equilibrium condition of the stratified flow 

(Taitel and Dukler, 1976), which is given by 

 

𝜏𝐺𝑤𝑆𝐺
𝛼𝐺

−
𝜏𝐿𝑤𝑆𝐿
1 − 𝛼𝐺

+ 𝜏𝐼𝑆𝐼 (
1

1 − 𝛼𝐺
+
1

𝛼𝐺
) + (𝜌𝐿 − 𝜌𝐺)𝐴𝑔sin𝜃 = 0, 

 

(7.1) 

 

where 𝑆𝐺, 𝑆𝐼 and 𝑆𝐿 are the gas, interface, and liquid wetted perimeters, 

respectively, that are calculated considering a stratified geometry. The quantities 

𝜏𝐺𝑤, 𝜏𝐼 and 𝜏𝐿𝑤 are the wall-gas, interface and wall-liquid shear stresses. Some 

tests were made, during the development of the work, with different values for the 

void fraction at the inlet. The results suggest that slug characteristics are not 

significantly affected if the void fraction at the inlet is changed, as long as the 

superficial velocities remain the same. However, a more detailed study regarding 

this effect on the flow needs to be carried out. 

• Pressure correction and interfacial velocity terms are calculated according to Eqs. 

(3.42) and (3.43), respectively. Some tests were performed with the AUSMDV 

method using different interfacial velocity models, such as the one described in 

Furfaro and Saurel (2015), in which this parameter is calculated according to the 

acoustic impedance, and also considering values within gas and liquid velocities 

range. The results indicate that slug characteristics were not significantly affected 

with the changes in this parameter.  

• During the numerical simulations, results were recorded for all flow variables at 

different positions of the pipeline along the time with a sample frequency of 1000 

Hz. 

 

7.2.1 Results for the Water-Air Facility 

 

The experimental data was acquired fixing the liquid mass flow rate and varying the 

gas mass flow rate for several inclination angles: 2°, 5°, 15°, 20° and 30°. The first group 

of experiments were conducted for air-water system under steady-state condition. Even 

though the slug flow does not have a strict periodic behavior, its intermittency achieves a 

statistical steady state that allows the calculation of some slug characteristics, such as slug 
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frequency and translational velocity, that can be inferred from the experimental data and 

compared to the numerical simulation. Table 14 shows the flow configuration that were 

used in the numerical simulations. The flow temperature and pressure were set in the 

simulation based on the arithmetic average acquired from experimental data for each 

superficial gas velocity and inclination angle. 

Table 14: Flow configuration for the comparison with the water-air experimental 

facility. 

Configuration Value 

Fluids Water and Air 

Pipeline Length 20.42 m 

Internal Diameter 0.1016 m 

Pipeline Roughness 3.4 x 10−5 m 

Liquid Reference Density 998 kg/m³ 

Speed of Sound in Liquid 1480 m/s 

Gas Constant 287 (J/kg.K) 

Liquid Viscosity 1.001 x 10−3 Pa.s 

Gas Viscosity 1.9 x 10−5 Pa.s 

CFL number 0.45 

Mesh size 2000 

 

Slug Frequency 

 

Slug frequencies are determined based on the number of slugs that passes in a time 

window. Each of the following graph represents the slug frequency for a specific 

inclination angle plotted against the superficial gas velocity. 
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Figure 49: Slug frequency comparison between experiments and numerical simulation 

for the water-air facility with inclination angle of 2°. 

 

 

Figure 50: Slug frequency comparison between experiments and numerical simulation 

for the water-air facility with inclination angle of 5°. 
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Figure 51: Slug frequency comparison between experiments and numerical simulation 

for the water-air facility with inclination angle of 15°. 

 

 

Figure 52: Slug frequency comparison between experiments and numerical simulation 

for the water-air facility with inclination angle of 20°. 
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Figure 53: Slug frequency comparison between experiments and numerical simulation 

for the water-air facility with inclination angle of 30°. 

 

It can be noticed from Figs. 49 to 53 that under similar operation conditions, the slug 

frequency decreased as the superficial gas velocity increased for both experiments and 

numerical simulations. Even though the results for the simulations are underpredicting 

the slug frequencies, the tendency observed in the experiments was also obtained with the 

simulations. The fact that numerical frequency is lower than the experimental frequency 

may be explained by several factors. First, the absence of gas entrainment in the model 

has some impact on the slug dynamics, which will implicate that the bubbles of gas 

remain in the gas pocket above the liquid film (the Taylor bubble), increasing the distance 

between two slug bodies. Consequently, it will generate sparser slugs and lower slug 

frequencies. Although the 7E2P model considers the presence of bubbles and droplets 

explicitly in its formulation, it does not allow for gas entrainment either and, therefore, it 

results in lower frequencies, as well. Also, experimental observation of slug flow suggests 

that there is significant agitation (turbulence) in the slug front region, which is responsible 

for an extra pressure gradient, called “vortex pressure drop” in the literature (Cook and 

Behnia; 2000). Since the models here studied are one-dimensional, it is not possible to 

take this effect directly into consideration. This phenomenon may have an impact on how 

rapid the slug is formed. Furthermore, a new model that encompasses separate momentum 

equations for all the phases (including bubbles and droplets), which comprises a system 

of nine nonlinear PDE’s, may help to generate numerical results for the slug frequency 

that are closer to the experiments.  
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To allow a direct comparison between the experimental and the numerical data, Fig. 

54 presents the entire set of data concerning the slug frequencies for all inclination angles 

and superficial gas velocities, bounded by 60% error lines. A curve fit through this data 

implies that, on average, the numerical slug frequencies are about 40% lower than the 

experimental frequencies.  

 

 

Figure 54: Numerical slug frequency compared against experimental slug frequency for 

the water-air facility. 

 

Translational Velocity 

 

According to Shoham (2006), there are two velocities associated to the slug flow that 

are important to describe the slug physics, the 𝑢𝑠 and the 𝑢𝑡, which are the mean true 

velocity of the fluid in the slug body and the translational velocity, respectively. The 

translational velocity is the velocity of the slug front or the velocity of the interface 

between the gas (Taylor bubble) and the slug body. The slug velocity is the mixture 

velocity, 𝑢𝑚 = 𝑢𝑠𝐺 + 𝑢𝑠𝐿 and the translational velocity may be expressed in terms of the 

mixture velocity as  

 

𝑢𝑡 = 𝑐0𝑢𝑚 + 𝑢𝑑  , (7.2) 
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where 𝑐0 is a flow distribution coefficient and 𝑢𝐷 is the drift velocity, which is the velocity 

of a Taylor bubble in a stagnant liquid. The distribution parameter is reported by Fabre 

(1994) and Shoham (2006) to be 1.2 for turbulent flow and 2 for laminar flow, based on 

the slug Reynolds number 𝑅𝑒𝐿𝑆 = 𝜌𝐿𝑢𝑚𝐷 𝜇𝐿⁄ . The drift velocity can be calculated, for 

instance, according to Bendiksen’s correlation (Bendiksen, 1984) that is applicable to all 

inclinations, 

 

𝑢𝑑 = 0.54√𝑔𝐷cos𝜃 + 0.35√𝑔𝐷sin𝜃   for  0° ≤ 𝜃 ≤ 90° , (7.3) 

 

where 𝜃 is the pipe inclination angle, g is the gravity and D is the pipeline diameter.  

The translational velocity of the experiments is calculated using the cross-correlation, 

that was also used in many previous works, such as Gokcal (2008), Brito (2012) and Zhu 

(2019). The cross-correlation is a measure of how the two signals detected by the 

conductivity (or capacitance) sensors are correlated with each other based on the time 

delay between them. According to Brito (2012), if the signals are the same, the cross 

correlation returns one, whereas if they are completely different, it will be zero. With the 

output signals from the pair of conductivity (or capacitance) sensors, the cross-correlation 

analysis can be performed knowing the distance that separate the sensors from each other, 

and the translational velocity is obtained as follows 

 

𝑢𝑡 =
∆𝐿

𝜏
. 

 

(7.4) 

 

In Eq. (7.4), ∆𝐿 is the distance between the pair of sensors and 𝜏 is the temporal lag 

in seconds. It is worth mentioning that the same procedure for calculation of the 

translational velocity was done with the numerical results, in order to have the same 

strategy of comparison. 

The following graphs, shown in Figs. 55 to 59, show the translational velocity plotted 

against the mixture velocity for the numerical simulation, the experiments and the 

Bendiksen’s correlation, for each inclination. The uncertainty associated with the 

Bendiksen’s correlation, 𝑈𝑢𝑡𝑃 , is also displayed in the graphs and are calculated according 

to Aql (2020) as follows 
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𝑈𝑢𝑡𝑃 = −0.115 ln(𝑢𝑚) + 0.14. (7.5) 

 

 

Figure 55: Translational velocity against the mixture velocity for the water-air facility 

with inclination of 2°. 

 

 

Figure 56: Translational velocity against the mixture velocity for the water-air facility 

with inclination of 5°. 
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Figure 57: Translational velocity against the mixture velocity for the water-air facility 

with inclination of 15°. 

 

 

Figure 58: Translational velocity against the mixture velocity for the water-air facility 

with inclination of 20°. 
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Figure 59: Translational velocity against the mixture velocity for the water-air facility 

with inclination of 30°. 

 

The translational velocities obtained with the numerical simulations and experiments 

have a linear relation with the mixture velocity, as expected from the theory. The angular 

coefficient expected is 1.2 because we are dealing with turbulent flow for all inclination 

conditions. As can be observed, the translational velocity is, overall, being overpredicted 

by the numerical simulations. The slug flow is affected by a mixing region in front of the 

slug body that forms a recirculation zone that causes loss of momentum in different 

directions. Again, this effect is responsible for what the literature calls the “vortex 

pressure drop” (Cook and Behnia, 2000). The mathematical model herein used is a one-

dimensional approach of the problem, and, consequently, there are some physical 

behaviors, such as the recirculation, that it is not capable of predicting. The differences 

observed in the graphs can be explained by the simplicity of the one-dimensional model 

in representing effects that are intrinsically three-dimensional. Fig. 60 represents the 

summary of the translational velocity of the simulations compared to the experiments 

with 30% error. A curve fit through this data implies that, on average, the numerical 

translational velocities are about 20% higher than the experimental ones. 
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Figure 60: Numerical translational velocity compared against experimental translational 

velocity for the water-air facility. 

 

Pressure Gradient 

 

The pressure gradient is also compared to the experimental data. Single phase tests 

were conducted to check the proper functionality of the differential pressure sensors, as 

detailed in Appendix B. The pressure gradient results for the experiments are obtained 

according to Eq. (5.3), in which an arithmetic average of the three DP sensors is 

calculated. For the numerical simulation, pressure results at the same locations as in the 

experimental facility were acquired through time. The DP sensors are located at the 

second half of the pipeline, being the last two DPs very close to the outlet. During the 

simulations, it was possible to observe that there is a boundary effect near the outlet due 

to the boundary condition imposition at this location. Therefore, for the pressure gradient, 

only the first DP location was considered to obtain the numerical results for this facility.  

The pressure gradient obtained with the experimental runs are compared to the numerical 

results, as can be seen in Fig. 61. 
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Figure 61: Numerical pressure gradient compared against experimental pressure 

gradient for the water-air facility. 

From the previous graph, the pressure gradient results are comparable to the 

experimental ones with the same order of magnitude and the error range is 30%. The 

pressure is a flow variable that is very sensitive to the passage of the slugs during the 

simulation. This sensibility returns oscillations that increases numerical dispersion, 

impacting the accuracy of the measurement.  Even though this behavior is observed, the 

obtained results are promising, presenting a good estimation of the expected pressure 

gradient. A curve fit through this data implies that, on average, the numerical pressure 

gradients are about 20% higher than the experimental pressure gradients.  

 

7.2.2 Results for the High Viscosity Oil-Air Facility 

 

The experimental data obtained at the high viscosity oil-air facility was acquired for 

one inclination angle only, the horizontal configuration, under steady-state condition. 

Different combinations of liquid and gas superficial velocities were analyzed. The high 

viscosity-air is an indoor facility in which the room temperature is controlled to keep the 

fluid’s temperature at the desired state. The temperature affects the oil viscosity and 

density and, therefore, the dynamics of the slug flow.  

Table 15 shows the flow configuration that were used in the numerical simulations. 

The flow temperature and pressure were set in the simulation based on the mean value 

acquired from experimental data for each flow condition. The fluids, oil and air, and the 
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flow conditions were chosen such that the slug flow was laminar to distinguish form the 

air-water flow studied at the other facility. 

Table 15: Flow configuration for the comparison with the high viscosity oil-air 

experimental facility. 

Configuration Value 

Fluids Oil and Air 

Pipeline Length 18.48 m 

Internal Diameter 0.0508 m 

Pipeline Roughness 3.4 x 10−5 m 

Liquid Reference Density 849.92 kg/m³ 

Speed of Sound in Liquid 1450 m/s 

Gas Constant 287 (J/kg.K) 

Oil Temperature 70°F or 21.1°C 

Liquid Viscosity 0.68 Pa.s 

Gas Viscosity 1.9 x 10−5 Pa.s 

CFL number 0.45 

Mesh size 2000 

 

Slug Frequency 

 

The same slug frequency analysis is performed for the oil-air cases. Figures 62 to 66 

show the numerical simulation results for slug frequency compared to experimental data 

for each superficial liquid velocity.  
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Figure 62: Slug frequency comparison between experiments and numerical simulation 

for the high viscosity oil-air facility with 𝑢𝑆𝐿 = 0.1m/s. 

 

 

Figure 63: Slug frequency comparison between experiments and numerical simulation 

for the high viscosity oil-air facility with 𝑢𝑆𝐿 = 0.2m/s. 
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Figure 64: Slug frequency comparison between experiments and numerical simulation 

for the high viscosity oil-air facility with 𝑢𝑆𝐿 = 0.25m/s. 

 

 

Figure 65: Slug frequency comparison between experiments and numerical simulation 

for the high viscosity oil-air facility with 𝑢𝑆𝐿 = 0.3m/s. 
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Figure 66: Slug frequency comparison between experiments and numerical simulation 

for the high viscosity oil-air facility with 𝑢𝑆𝐿 = 0.4m/s. 

 

It can be observed that, once again, the slug frequencies are underpredicted by the 

numerical model. It is possible to notice that the slug frequencies, in general, increases 

with the increased viscosity, which was expected according to Gokcal (2008). The lower 

values of frequency can be explained by the lack of a gas entrainment model, as 

mentioned previously, leading to longer gas pockets and, therefore, a smaller number of 

slugs. Moreover, experimental observation of slug flow suggests that there is significant 

agitation (turbulence) in the slug front region, called “vortex pressure drop” in the 

literature (Cook and Behnia; 2000) that the one-dimensional models here studied are not 

taking into consideration. 

The following graph presents the summary of the comparison of the slug frequency 

obtained numerically and experimentally with 70% error. As expected, based on the 

previous graphs, the slug frequencies were not as well captured by the numerical strategy 

as for the previous experiments. With the increased oil viscosity, the slug frequencies 

increased, however, it was not enough to have a better match with the experiments. A 

curve fit through this data implies that, on average, the numerical slug frequencies are 

about 70% lower than the experimental ones.  
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Figure 67: Numerical slug frequency compared against experimental slug frequency for 

the high viscosity oil-air facility. 

 

Translational Velocity 

 

In Eq. (7.3), the drift velocity was calculated according to Bendiksen’s (1984) 

correlation. Despite being a great reference in obtaining the translational velocity, this 

correlation does not consider the liquid viscosity. Thus, another correlation is compared 

to the results taking into account the liquid viscosity. The correlation of Moreiras et al.  

(2014) is also plotted in the translational velocity graph with Bendiksen’s (1984) 

correlation. This correlation is calculated as follows 

 

𝑢𝑑 = Fr𝜌𝐿
−0.5[𝑔𝐷(𝜌𝐿 − 𝜌𝐺)]

0.5, (7.6) 

 
 

where  

 

Fr = Fr𝐻cos𝜃
1.2391 + Fr𝑉sin𝜃

1.2315 +𝑄, (7.7) 

 
 

Fr𝐻 = 0.54 −
𝑁𝑣𝑖𝑠

1.886𝑁𝑣𝑖𝑠 + 0.01443
, 

(7.8) 
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Fr𝑉 = −
8

3
𝑁𝑣𝑖𝑠 +√

2

9

𝜌𝐿
(𝜌𝐿 − 𝜌𝐺)

+
64

9
𝑁𝑣𝑖𝑠
2 − (

√2

3
− 0.35)√

𝜌𝐿
(𝜌𝐿 − 𝜌𝐺)

, 

 

    (7.9) 

 

where  

 

  𝑁𝑣𝑖𝑠 =
𝜇

√𝑔𝐷3(𝜌𝐿 − 𝜌𝐺)𝜌𝐿
. 

 

    (7.10) 

 

If (Fr𝑉 − Fr𝐻) < 0, then 𝑄 = 0. If  (Fr𝑉 − Fr𝐻) ≥ 0,  

 

Q = 2.1589(Fr𝑉 − Fr𝐻)
0.70412sin𝜃(1 − sin𝜃). (7.11) 

 

In Fig. 68 the translational velocity is plotted against the mixture velocity for the 

numerical simulations, experimental results and the two correlations, Bendiksen (1984) 

and Moreiras et al. (2014). 

 

 

Figure 68: Translational velocity against the mixture velocity for the high viscosity oil-

air facility. 

 

It can be observed that the translational velocity and mixture velocity have a linear 

relation for all the results, the angular coefficient for the curves is greater than for the 

previous experimental facility results and near the value of 2, corresponding to laminar 
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flow, which was expected. The translational velocity obtained from the numerical results, 

once again, has differences if compared to the experimental results. These differences can 

be explained based on the absence of gas entrainment in the model that has some impact 

on the slug dynamics and the simplicity of the one-dimensional model in representing 

effects that are intrinsically three-dimensional, such as the significant agitation 

(turbulence) in the slug front region, which is responsible for an extra pressure gradient, 

called “vortex pressure drop”. 

A summary of the simulated and experimental translational velocity and a curve fit 

through this data implies that, on average, are higher than the experimental translational 

velocities with 50% error, as presented in Fig. 69. 

 

 

Figure 69: Numerical translational velocity compared against experimental translational 

velocity for the high viscosity oil-air facility. 

 

Pressure Gradient 

 

The pressure gradient is also compared to the experimental data. Single phase tests 

were performed to verify the proper functionality of the differential pressure sensors, as 

detailed in Appendix B. As can be observed in the Appendix B, for this experimental 

facility, the first two differential pressure sensors returned higher errors if compared to 

the others. For that reason, in the pressure gradient calculation for the experimental data, 

the first two DP sensors are neglected, and the arithmetic average was taken from the 
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others two sensors. For the numerical simulation, the same boundary effect can be 

observed, as described for the 4in facility. Therefore, an arithmetic average of DP1 and 

DP2 are taken to obtain the final pressure gradient result. 

The pressure gradient that is generated by the numerical simulations are plotted 

against the experimental results with a range of 50% error, as presented in Fig. 70. It can 

be inferred from the graph that the pressure drop is overpredicted, in an overall 

perspective, by the numerical simulations. As already mentioned in the previous section, 

oscillations in the pressure results are observed, increasing numerical dispersion. For this 

facility as the flow conditions are smoother and the flow regime is laminar, the 

oscillations are smaller, and a more regular trend can be identified in the pressure gradient 

result.  

 

 

Figure 70: Numerical pressure gradient compared against experimental pressure 

gradient for high viscosity oil-air facility. 
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8 Final Considerations 
 

 This chapter summarizes all the studies developed in this work and shows the 

conclusions that are obtained from the analysis of the results. Moreover, 

recommendations for future work are suggested to improve the slug capturing numerical 

model. 

 

8.1 Conclusions 
 

 During the development of this work, the transient one-dimensional two-fluid model 

is implemented considering two different approaches: the five-equation model, 5E2P, and 

the seven-equation model, 7E2P. The 5E2P is used in the literature for slug capturing 

simulation, while the 7E2P is a new mathematical model that encompasses the droplet 

and bubble phases. Both mathematical models have two pressures and the addition of the 

evolution equations for the volume fraction, Eqs. (3.1) and (3.9), turns the models 

hyperbolic, and the problem becomes well-posed. In comparison with models comprised 

of less equations, such as the 4E1P model, the two-pressure models present an analytical 

eigenstructure that facilitate the use of numerical methods that requires the determination 

of the characteristics, such as the Roe scheme presented. An important comment 

regarding the 7E2P is that, due to the way it is written, the bubble and droplet volume 

fractions must be small in order to guarantee that the mixtures wave speeds, gas-droplets 

and liquid-bubble, are as close as possible to the gas or liquid wave speeds, respectively. 

The wave speed affects the eigenvalues of the PDE system, which dictates how fast 

information travels in each phase, and the CFL condition. 

 Different numerical methods are also considered in the present work: AUSM-type 

and Roe. Even though all the numerical methods are accurate, they behave differently 

when compared with each other in the benchmark problem’s simulations. The AUSM-

type methods, despite being first-order accurate, according to the accuracy check study, 

are simpler to implement, there is no need for eigenstructure analysis, and the 

computational time is reduced if compared to the Roe method.   

 Mathematical models and numerical methods are combined with each other to solve 

benchmark problems: the water faucet, the shock tube and the separation problems. With 

this study, it is concluded that the 7E2P returns similar results than the 5E2P and the 
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AUSM-type of method represented better the expected solutions. The AUSMDV method 

is subject to a study regarding the tuning parameter that balances, essentially, diffusive 

and dispersive effects. For the cases that the method was tested in this work, the tuning 

parameter equals to 0.8 returns better results. According to the studies performed in this 

work and having in mind the desired application for the numerical strategy, the best 

model/method combination is the 5E2P with the AUSMDV ss=0.8. However, the 7E2P 

model, because it incorporates more physics in it, deserves a more thorough investigation 

on the conditions under which it produces significantly better results than the 5E2P model 

when compared to experiments. Simulations with higher values of 𝛼𝐵 and 𝛼𝐷 are 

imperative, and they must include a gas entrainment model as well as suitable friction 

correlations for the interaction among the four phases.  

 Regarding the slug capturing simulation, a comparison with a literature case, in which 

the slug flow is generated from the stratified flow due to the instabilities that grow in the 

interface between the fluids, is performed. For this study, the Roe and the AUSMDV 

methods are used to successfully verify the ability of the numerical model to capture the 

onset and evolution of the slug flow. Both two-fluid models demonstrated that they can 

capture the slug flow initiation and development along the line, as was reported in the 

literature. 

 Continuing the slug capturing study, an experimental campaign is carried out and the 

results are compared with the simulations by means of slug characteristics and pressure 

gradient. During the experimental campaign, two facilities are used: the 2inch and the 

4inch facilities. The tests performed with the 4in facility are with water and air for 

different inclination angles, while for the 2in, the fluids are high viscosity synthetic oil 

and air and the flow loop is in the horizontal condition. The objective of the experimental 

campaign is to have enough experimental data that will serve as a validation of the 

numerical code under several slug flow conditions.  

 The results indicated that, in general, the frequency is being underpredicted and the 

translational velocity is being overpredicted by the numerical simulation. The two-fluid 

model is a one-dimensional approach of a physical problem that has intrinsically three-

dimensional effects. Some of those effects are not being captured by the mathematical 

model herein presented due to its simplicity in representing the flow as a one-dimensional 

point of view. One effect that is present in the slug flow, is the recirculation zone in the 

slug front. The slug body, that is moving faster than the liquid film ahead of it, lifts it up 

and accelerates it generating a turbulent mixing zone.  This phenomenon causes loss of 
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momentum in transverse directions that the two-fluid model is not capable to represent, 

and as a consequence, it impacts in the slug flow characteristics. Another detail that could 

explain the lower frequency values is that the gas phase remains in the gas pocket instead 

of in the slug body because of the lack of a gas entrainment model. This makes the gas 

pocket larger and the slug bodies more spares. A third possible attempt to improve the 

numerical results in the comparison with experiments is to increase the number of 

equations in the mathematical model, so that a momentum equation is added for the 

bubble and droplet phases. This approach will allow each phase to move with its own 

velocity and the slip velocity that occurs in the real flow will be embedded in the model 

explicitly, without the need to use empirical correlations. 

 To conclude, although the simulations are presenting relevant differences, the 

numerical model is showing promising results. The simulations that are performed in this 

work indicate that the numerical model is generating slugs and it keeps generating them 

through time, affirming the capability of the two-fluid model in predicting the intermittent 

flow automatically. The intermittent flow dynamics is very complex and presents an 

unsteady behavior with uncommon characteristics. Even though such complexity cannot 

be perfectly modelled with a one-dimensional perspective, the obtained results are 

showing that the two-fluid model is a good and reliable tool to estimate this flow behavior. 

 

8.2 Recommendations for Future Work 
 

 A natural recommendation for future work would be the improvement of the 

mathematical model. The first modification should be the gas entrainment model that 

encompasses the presence of bubbles in the slug body. The 7E2P model might be a good 

start, if computational time is not the main concern, by including momentum equations 

for all the phases, giving rise to a 9E2P (nine-equation) model. The dynamics and shape 

of the bubble phase can be modeled in order to try to get better results in the comparison 

with experiments. Moreover, simulations with higher values of 𝛼𝐵 and 𝛼𝐷 are imperative, 

and they must include suitable friction correlations for the interaction among the four 

phases.  

 The 5E2P model could be improved with the inclusion of terms in the existing 

equations that could account for the momentum losses due to the recirculation zone in the 

slug front, for instance, as an alternative to try to represent better the effects that are not 
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being considered at the moment. This improvement requires a deep sensitivity study of 

the model to verify which term should be added to the equations.  

 Another improvement in the model that could be beneficial is the inclusion of mass 

transfer terms between the phases. Obviously, the inclusion of these terms is directly 

influenced by the necessity of them in the desired application of the mathematical model. 

Moreover, if thermal effects are important to be considered, the energy equations could 

be added as well. It is worth mentioning that the hyperbolicity analysis needs to be redone 

whenever a new equation is added to the mathematical model. 

   Regarding the boundary conditions imposition, a new strategy can be adopted to 

avoid the boundary effect near the outlet that was observed during the simulations. The 

boundary conditions implemented in this work are based on the standard strategy 

presented in the literature, such as Omgba-Essama (2004), Ferrari et al. (2017), 

Figueiredo et al. (2017), as described in section 4.4. In this strategy, the values of the flow 

variables that are not prescribed as boundary conditions are replications from the neighbor 

discretized inner cell. Therefore, indirectly, the ghost and its neighbor cells have the same 

values which implies in a null derivative condition. In order to improve this strategy, an 

idea would be to prescribe the ghost cell value by doing an extrapolation of this quantity 

based on the derivative from the neighbor inner cell. 
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Appendix A – Detailed Roe Scheme 
 

 In an algebraic point of view, it is not simple to obtain the Jacobian matrix, A, for the 

5E2P and 7E2P mathematical models. A more direct way is to write the system of 

equations as a function of the primitive variables vector, W, as  

 

𝜕𝐖

𝜕𝑡
+ 𝐁(𝐖)

𝜕𝐖

𝜕𝑥
= Ϛ(𝐖). 

(A.1) 

 

 From Eq. (A.1), the matrix A can be determined by first calculating the matrices, 𝐉 

and its inverse matrix, 𝐉−𝟏 defined as 

 

𝐉 ≡
𝜕𝐐

𝜕𝐖
  e  𝐉−𝟏 ≡

𝜕𝐖

𝜕𝐐
, 

 

(A.2) 

 

and, using the chain rule in Eq. (A.1),  

 

𝜕𝐖

𝜕𝐐

𝜕𝐐

𝜕𝑡
+ 𝐁(𝐖)

𝜕𝐖

𝜕𝐐

𝜕𝐐

𝜕𝑥
= Ϛ(𝐖). 

 

(A.3) 

 

 Using Eq. (A.2) in Eq. (A.3),  

 

𝐉−𝟏
𝜕𝐐

𝜕𝑡
+ 𝐁(𝐖)𝐉−𝟏

𝜕𝐐

𝜕𝑥
= Ϛ(𝐖). 

 

(A.4) 

 

 Eq. (A.4) implies that 

 

𝐀 = 𝐉𝐁𝐉−𝟏 (A.5) 

 

and  

 

𝐒 = 𝐉𝛈. (A.6) 
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 To determine B, the system of equation should be written as 

 

𝐂
𝜕𝐖

𝜕𝑡
+ 𝐃

𝜕𝐖

𝜕𝑥
= 𝐄(𝐖), 

(A.7) 

 

where E = S. For the 5E2P model, 

 

𝐂 =

[
 
 
 
 
1 0 0 0 0
𝜌𝐺 𝛼𝐺/𝑐𝐺

2 0 0 0

−𝜌𝐿 0 𝛼𝐿/𝑐𝐿
2 0 0

0 0 0 𝛼𝐺𝜌𝐺 0
0 0 0 0 𝛼𝐿𝜌𝐿]

 
 
 
 

, 

 

 

(A.8) 

 

and 

𝐃 =

[
 
 
 
 
𝑢𝐼 0 0 0 0

𝑢𝐺𝜌𝐺 𝛼𝐺𝑢𝐺/𝑐𝐺
2 0 𝛼𝐺𝜌𝐺 0

−𝑢𝐿𝜌𝐿 0 𝛼𝐿𝑢𝐿/𝑐𝐿
2 0 𝛼𝐿𝜌𝐿

𝛥𝑝𝐼𝐺 𝛼𝐺 0 𝛼𝐺𝜌𝐺𝑢𝐺 0
−𝛥𝑝𝐼𝐿 0 𝛼𝐿 0 𝛼𝐿𝜌𝐿𝑢𝐿]

 
 
 
 

. 

 

 

(A.9) 

 

 Comparing Eq. (A.1) and Eq. (A.7), 

 

𝐁 = 𝐂−𝟏𝐃, (A.10) 

 

and 

 

𝛈 = 𝐂−𝟏𝐄. (A.11) 

 

Then,  
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𝐁 =

[
 
 
 
 
 
 
 
 
 

𝑢𝐼 0 0 0 0

𝑐𝐺
2(𝑢𝐺−𝑢𝐼)𝜌𝐺

𝛼𝐺
𝑢𝐺 0 𝑐𝐺

2𝜌𝐺 0

−
𝑐𝐿
2(𝑢𝐿−𝑢𝐼)𝜌𝐿

𝛼𝐿
0 𝑢𝐿 0 𝑐𝐿

2𝜌𝐿

𝛥𝑝𝐼𝐺
𝛼𝐺𝜌𝐺

1

𝜌𝐺
0 𝑢𝐺 0

−
𝛥𝑝𝐼𝐿
𝛼𝐿𝜌𝐿

0
1

𝜌𝐿
0 𝑢𝐿 ]

 
 
 
 
 
 
 
 
 

. 

 

 

 

(A.12) 

 

 Identifying the transformation matrix, J as 

 

𝐉 =

[
 
 
 
 
 

1 0 0 0 0
𝜌𝐺 𝛼𝐺/𝑐𝐺

2 0 0 0

−𝜌𝐿 0 𝛼𝐿/𝑐𝐿
2 0 0

𝑢𝐺𝜌𝐺 𝛼𝐺𝑢𝐺/𝑐𝐺
2 0 𝛼𝐺𝜌𝐺 0

−𝑢𝐿𝜌𝐿 0 𝛼𝐿𝑢𝐿/𝑐𝐿
2 0 𝛼𝐿𝜌𝐿]

 
 
 
 
 

, 

 

 

(A.13) 

 

it is possible to obtain the Jacobian matrix, A,  

 

𝐀(𝐐) =

[
 
 
 
 

𝑢𝐼 0 0 0 0
0 0 0 1 0
0 0 0 0 1

𝛥𝑝𝐼𝐺 − 𝜌𝐺𝑐𝐺
2 𝑐𝐺

2 − 𝑢𝐺
2 0 2𝑢𝐺 0

−𝛥𝑝𝐼𝐿 + 𝜌𝐿𝑐𝐿
2 0 𝑐𝐿

2 − 𝑢𝐿
2 0 2𝑢𝐿]

 
 
 
 

. 

 

 

(A.14) 

 

The eigenvalues are analytical expressions, given by: 𝜆1 = 𝑢𝐼, 𝜆2 = 𝑢𝐺 − 𝑐𝐺, 𝜆3 = 𝑢𝐺 +

𝑐𝐺, 𝜆4 = 𝑢𝐿 − 𝑐𝐿 e 𝜆5 = 𝑢𝐿 + 𝑐𝐿. The eigenvectors of matrix A, with the right 

eigenvectors, R, in columns, can be expressed as 
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𝐑

=

[
 
 
 
 
 
 
 
 
 

(𝑐𝐿+𝑢𝐼 − 𝑢𝐿)(𝑐𝐿−𝑢𝐼 + 𝑢𝐿)

𝑢𝐼(𝛥𝑝𝐼𝐿 − 𝜌𝐿𝑐𝐿
2)

0 0 0 0

−
(𝑐𝐿+𝑢𝐼 − 𝑢𝐿)(𝑐𝐿−𝑢𝐼 + 𝑢𝐿)(𝛥𝑝𝐼𝐺 − 𝜌𝐺𝑐𝐺

2)

𝑢𝐼(𝑐𝐺+𝑢𝐼 − 𝑢𝐺)(𝑐𝐺−𝑢𝐼 + 𝑢𝐺)(𝛥𝑝𝐼𝐿 − 𝜌𝐿𝑐𝐿
2)

1

𝑢𝐺 − 𝑐𝐺

1

𝑢𝐺 + 𝑐𝐺
0 0

1

𝑢𝐼
0 0

1

𝑢𝐿 − 𝑐𝐿

1

𝑢𝐿 + 𝑐𝐿

(𝑐𝐿+𝑢𝐼 − 𝑢𝐿)(𝑐𝐿−𝑢𝐼 + 𝑢𝐿)(−𝛥𝑝𝐼𝐺 + 𝜌𝐺𝑐𝐺
2)

(𝑐𝐺+𝑢𝐼 − 𝑢𝐺)(𝑐𝐺−𝑢𝐼 + 𝑢𝐺)(𝛥𝑝𝐼𝐿 − 𝜌𝐿𝑐𝐿
2)

1 1 0 0

1 0 0 1 1 ]
 
 
 
 
 
 
 
 
 

, 

 

 

 

 

(A.15) 

and being the matrix 𝐑−𝟏 the inverse matrix of R, given by 

𝐑−𝟏

=

[
 
 
 
 
 
 
 
 
 
 
 

𝑢𝐼(𝛥𝑝𝐼𝐿 − 𝜌𝐿𝑐𝐿
2)

(𝑐𝐿+𝑢𝐼 − 𝑢𝐿)(𝑐𝐿−𝑢𝐼 + 𝑢𝐿)
0 0 0 0

(𝑐𝐺 − 𝑢𝐺)(−𝛥𝑝𝐼𝐺 + 𝜌𝐺𝑐𝐺
2)

2𝑐𝐺(𝑐𝐺+𝑢𝐼 − 𝑢𝐺)

𝑢𝐺
2 − 𝑐𝐺

2

2𝑐𝐺
0

𝑐𝐺 − 𝑢𝐺
2𝑐𝐺

0

−
(𝑐𝐺 + 𝑢𝐺)(−𝛥𝑝𝐼𝐺 + 𝜌𝐺𝑐𝐺

2)

2𝑐𝐺(𝑐𝐺−𝑢𝐼 + 𝑢𝐺)

𝑐𝐺
2 − 𝑢𝐺

2

2𝑐𝐺
0

𝑐𝐺 + 𝑢𝐺
2𝑐𝐺

0

−
(𝑐𝐿 − 𝑢𝐿)(−𝛥𝑝𝐼𝐿 + 𝜌𝐿𝑐𝐿

2)

2𝑐𝐿(𝑐𝐿+𝑢𝐼 − 𝑢𝐿)
0

𝑢𝐿
2 − 𝑐𝐿

2

2𝑐𝐿
0

𝑐𝐿 − 𝑢𝐿
2𝑐𝐿

(𝑐𝐿 + 𝑢𝐿)(−𝛥𝑝𝐼𝐿 + 𝜌𝐿𝑐𝐿
2)

2𝑐𝐿(𝑐𝐿−𝑢𝐼 + 𝑢𝐿)
0

𝑐𝐿
2 − 𝑢𝐿

2

2𝑐𝐿
0

𝑐𝐿 + 𝑢𝐿
2𝑐𝐿 ]

 
 
 
 
 
 
 
 
 
 
 

. 

 

 

 

 

(A.16) 

 

 For the 7E2P model, the Eqs. (A.8 – A.9) and Eqs. (A.12 – A.16) are written as 

 

𝐂 =

[
 
 
 
 
 
 
 
1 0 1 0 0 0 0
𝜌𝐺 0 0 𝛼𝐺/𝑐𝐺

2 0 0 0

−𝜌𝐿 −𝜌𝐿 −𝜌𝐿 0 𝛼𝐿/𝑐𝐿
2 0 0

0 0 0 0 0 (𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿) 0
0 0 0 0 0 0 (𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺)

0 𝜌𝐺 0 0 𝛼𝐵/𝑐𝐺
2 0 0

0 0 𝜌𝐿 𝛼𝐷/𝑐𝐿
2 0 0 0 ]

 
 
 
 
 
 
 

. 

 

 

(A.17) 

𝐃

=

[
 
 
 
 
 
 
 
𝑢𝐼 0 𝑢𝐼 0 0 0 0

𝜌
𝐺
𝑢𝐺 0 0 𝛼𝐺𝑢𝐺/𝑐𝐺

2 0 𝛼𝐺𝜌𝐺 0

−𝜌
𝐿
𝑢𝐿 −𝜌

𝐿
𝑢𝐿 −𝜌

𝐿
𝑢𝐿 0 𝛼𝐿𝑢𝐿/𝑐𝐿

2 0 𝛼𝐿𝜌𝐿
𝛥𝑝

𝐼𝐺
0 𝛥𝑝

𝐼𝐺
𝛼𝐺 + 𝛼𝐷 0 (𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)𝑢𝐺 0

−𝛥𝑝
𝐼𝐿

0 −𝛥𝑝
𝐼𝐿

0 𝛼𝐿 + 𝛼𝐵 0 (𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺)𝑢𝐿

0 𝜌
𝐺
𝑢𝐿 0 0 𝛼𝐵𝑢𝐿/𝑐𝐺

2 0 𝛼𝐵𝜌𝐺

0 0 𝜌
𝐿
𝑢𝐺 𝛼𝐷𝑢𝐺/𝑐𝐿

2 0 𝛼𝐷𝜌𝐿 0 ]
 
 
 
 
 
 
 

. 

 

 

 

(A.18) 

 Defining 𝑋 ≡ 𝑐𝐺
2𝛼𝐷𝜌𝐺 + 𝑐𝐿

2𝛼𝐺𝜌𝐿 and 𝑌 ≡ 𝑐𝐺
2𝛼𝐿𝜌𝐺 + 𝑐𝐿

2𝛼𝐵𝜌𝐿  to obtain matrix B,  
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𝐁 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑐𝐺
2𝑢𝐺𝛼𝐷𝜌𝐺 + 𝑐𝐿

2𝑢𝐼𝛼𝐺𝜌𝐿
𝑋

0
𝑐𝐿
2(𝑢𝐼 − 𝑢𝐺)𝛼𝐺𝜌𝐿

𝑋
0 0

𝛼𝐺𝛼𝐷(𝑐𝐺
2𝜌𝐺 − 𝑐𝐿

2𝜌𝐿)

𝑋
0

𝑐𝐿
2(𝑢𝐿 − 𝑢𝐼)𝛼𝐵𝜌𝐿

𝑌
𝑢𝐿

𝑐𝐿
2(𝑢𝐿 − 𝑢𝐼)𝛼𝐵𝜌𝐿

𝑌
0 0 0

𝛼𝐵𝛼𝐿(𝑐𝐺
2𝜌𝐺 − 𝑐𝐿

2𝜌𝐿)

𝑌
𝑐𝐺
2(𝑢𝐼 − 𝑢𝐺)𝛼𝐷𝜌𝐺

𝑋
0

𝑐𝐺
2𝑢𝐼𝛼𝐷𝜌𝐺 + 𝑐𝐿

2𝑢𝐺𝛼𝐺𝜌𝐿
𝑋

0 0
𝛼𝐺𝛼𝐷(𝑐𝐿

2𝜌𝐿 − 𝑐𝐺
2𝜌𝐺)

𝑋
0

𝑐𝐺
2𝑐𝐿
2(𝑢𝐺 − 𝑢𝐼)𝜌𝐿𝜌𝐺

𝑋
0

𝑐𝐺
2𝑐𝐿
2(𝑢𝐺 − 𝑢𝐼)𝜌𝐿𝜌𝐺

𝑋
𝑢𝐺 0

𝑐𝐺
2𝑐𝐿
2(𝛼𝐷 + 𝛼𝐺)𝜌𝐿𝜌𝐺

𝑋
0

𝑐𝐺
2𝑐𝐿
2(𝑢𝐼 − 𝑢𝐿)𝜌𝐿𝜌𝐺

𝑌
0

𝑐𝐺
2𝑐𝐿
2(𝑢𝐼 − 𝑢𝐿)𝜌𝐿𝜌𝐺

𝑌
0 𝑢𝐿 0

𝑐𝐺
2𝑐𝐿
2(𝛼𝐵 + 𝛼𝐿)𝜌𝐿𝜌𝐺

𝑌
𝛥𝑝𝐼𝐺

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿
0

𝛥𝑝𝐼𝐺
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

𝛼𝐷 + 𝛼𝐺
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

0 𝑢𝐺 0

−
𝛥𝑝𝐼𝐿

𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿
0 −

𝛥𝑝𝐼𝐿
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

0
𝛼𝐵 + 𝛼𝐿

𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿
0 𝑢𝐿 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   (A.19) 

 

𝐉

=

[
 
 
 
 
 
 
 
 

1 0 1 0 0 0 0

𝜌
𝐺

0 0 𝛼𝐺/𝑐𝐺
2

0 0 0

−𝜌
𝐿

−𝜌
𝐿

−𝜌
𝐿

0 𝛼𝐿/𝑐𝐿
2

0 0

𝜌
𝐺
𝑢𝐺 0 𝜌

𝐿
𝑢𝐺

𝛼𝐺𝑢𝐺

𝑐𝐺
2

+
𝛼𝐷𝑢𝐺

𝑐𝐿
2

0 (𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿) 0

−𝜌
𝐿
𝑢𝐿 (𝜌

𝐺
𝑢𝐿 − 𝜌

𝐿
𝑢𝐿) −𝜌

𝐿
𝑢𝐿 0

𝛼𝐿𝑢𝐿

𝑐𝐿
2
+
𝛼𝐵𝑢𝐿

𝑐𝐺
2

0 (𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺)

0 𝜌
𝐺

0 0 𝛼𝐵/𝑐𝐺
2

0 0

0 0 𝜌
𝐿

𝛼𝐷/𝑐𝐿
2

0 0 0 ]
 
 
 
 
 
 
 
 

. 

 

   (A.20) 

 Using the definition of 𝑋 and 𝑌 that were defined to obtain the matrix B, and adding 

𝑍 ≡ 𝑐𝐺
2𝑐𝐿
2(𝛼𝐷 + 𝛼𝐺)  and 𝐾 ≡ 𝑐𝐺

2𝑐𝐿
2(𝛼𝐵 + 𝛼𝐿), to obtain the Jacobian matrix for the 7E2P 

model 

 

  𝐀 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑢𝐼 0 0 0 0 0 0

0
𝛼𝐷𝑢𝐺𝜌𝐿

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿
0

𝛼𝐺𝜌𝐺
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

0 0 −
𝛼𝐺𝑢𝐺𝜌𝐺

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

0 0
𝛼𝐵𝑢𝐿𝜌𝐺

𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺
0

𝛼𝐿𝜌𝐿
𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺

−
𝛼𝐿𝑢𝐿𝜌𝐿

𝛼𝐿𝜌𝐿 + 𝛼𝐵𝜌𝐺
0

𝛥𝑝𝐼𝐺 −
𝑍𝜌𝐿𝜌𝐺
𝑋

𝑍𝜌𝐿
𝑋
− 𝑢𝐺

2 0 2𝑢𝐺 0 0
𝑍𝜌𝐺
𝑋

− 𝑢𝐺
2

−𝛥𝑝𝐼𝐿 +
𝐾𝜌𝐿𝜌𝐺
𝑌

0
𝐾𝜌𝐺
𝑌

− 𝑢𝐿
2 0 2𝑢𝐿

𝐾𝜌𝐿
𝑌

− 𝑢𝐿
2 0

0 0 −
𝛼𝐵𝑢𝐿𝜌𝐺

𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿
0

𝛼𝐵𝜌𝐺
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

𝛼𝐿𝑢𝐿𝜌𝐿
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

0

0 −
𝛼𝐷𝑢𝐺𝜌𝐿

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿
0

𝛼𝐷𝜌𝐿
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

0 0
𝛼𝐺𝑢𝐺𝜌𝐺

𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   (A.21) 
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The eigenvalues of the matrix A are: 𝜆1 = 𝑢𝐼, 𝜆2 = 𝑢𝐺 , 𝜆3 = 𝑢𝐿, 𝜆4 = 𝑢𝐺 −

√
𝑐𝐺
2𝑐𝐿
2(𝛼𝐷+𝛼𝐺)2𝜌𝐿𝜌𝐺

(𝛼𝐺𝜌𝐺+𝛼𝐷𝜌𝐿)𝑋
, 𝜆5 = 𝑢𝐺 +√

𝑐𝐺
2𝑐𝐿

2(𝛼𝐷+𝛼𝐺)2𝜌𝐿𝜌𝐺

(𝛼𝐺𝜌𝐺+𝛼𝐷𝜌𝐿)𝑋
, 𝜆6 = 𝑢𝐿 −√

𝑐𝐺
2𝑐𝐿
2(𝛼𝐵+𝛼𝐿)2𝜌𝐿𝜌𝐺

(𝛼𝐵𝜌𝐺+𝛼𝐿𝜌𝐿)𝑌
 𝑒 𝜆7 =

𝑢𝐿 +√
𝑐𝐺
2𝑐𝐿

2(𝛼𝐵+𝛼𝐿)2𝜌𝐿𝜌𝐺

(𝛼𝐵𝜌𝐺+𝛼𝐿𝜌𝐿)𝑌
.
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𝐑 = 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(−𝑢𝑖
2 + 2𝑢𝑖𝑢𝐺 − 𝜆4𝜆5)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿(−𝛥𝑝𝐼𝐺 +
𝑍𝜌𝐿𝜌𝐺
𝑋

)
0 0 0 0 0 0

𝛼𝐺𝜌𝐺
𝛼𝐷𝜌𝐿

−
𝜌𝐺
𝜌𝐿

0
𝛼𝐺𝜌𝐺
𝛼𝐷𝜌𝐿

𝛼𝐺𝜌𝐺
𝛼𝐷𝜌𝐿

0 0

𝛼𝐿(𝛥𝑝𝐼𝐿 −
𝐾𝜌𝐿𝜌𝐺
𝑌

)(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐺 + 𝜆4𝜆5)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷(𝛥𝑝𝐼𝐺 −
𝑍𝜌𝐿𝜌𝐺
𝑋

)(−𝑢𝑖
2 + 2𝑢𝑖𝑢𝐿 − 𝜆6𝜆7)(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

0 −
𝜌𝐿
𝜌𝐺

0 0
𝛼𝐿𝜌𝐿
𝛼𝐵𝜌𝐺

𝛼𝐿𝜌𝐿
𝛼𝐵𝜌𝐺

𝑢𝑖(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿
−
𝑢𝐺(𝜌𝐺 − 𝜌𝐿)

𝜌𝐿
0

𝜆4(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿

𝜆5(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿
0 0

−
𝑢𝑖(𝛥𝑝𝐼𝐿 −

𝐾𝜌𝐿𝜌𝐺
𝑌

)(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐺 + 𝜆4𝜆5)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿(𝛥𝑝𝐼𝐺 −
𝑍𝜌𝐿𝜌𝐺
𝑋

)(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐿 + 𝜆6𝜆7)

0 −
𝑢𝐿(−𝜌𝐺 + 𝜌𝐿)

𝜌𝐺
0 0

𝜆6(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

𝛼𝐵𝜌𝐺

𝜆7(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

𝛼𝐵𝜌𝐺

𝛼𝐵𝜌𝐺(𝛥𝑝𝐼𝐿 −
𝐾𝜌𝐿𝜌𝐺
𝑌

)(−𝑢𝑖
2 + 2𝑢𝑖𝑢𝐺 − 𝜆4𝜆5)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿(𝛥𝑝𝐼𝐺 −
𝑍𝜌𝐿𝜌𝐺
𝑋

)(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐿 + 𝜆6𝜆7)(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

0 1 0 0 1 1

1 1 0 1 1 0 0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

                                                                                                                                                                                                                       (A.22) 

𝐑−𝟏 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝛼𝐷𝜌𝐿(−𝛥𝑝𝐼𝐺 +

𝑍𝜌𝐿𝜌𝐺
𝑋

)

(−𝑢𝑖
2 + 2𝑢𝑖𝑢𝐺 − 𝜆4𝜆5)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

0 0 0 0 0 0

0 −
𝛼𝐷𝜌𝐿

(𝛼𝐷 + 𝛼𝐺)𝜌𝐺
0 0 0 0

𝛼𝐺

(𝛼𝐷 + 𝛼𝐺)

0 0 −
𝛼𝐵𝜌𝐺

(𝛼𝐵 + 𝛼𝐿)𝜌𝐿
0 0

𝛼𝐿

(𝛼𝐵 + 𝛼𝐿)
0

𝛼𝐷𝜌𝐿(−𝛥𝑝𝐼𝐺 +
𝑍𝜌𝐿𝜌𝐺
𝑋

)(−𝑢𝑖 + 𝜆5)

2(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐺 + 𝜆4𝜆5)(𝜆5 − 𝑢𝐺)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿 [
𝑢𝐺𝛼𝐷(−𝜌𝐺 + 𝜌𝐿)
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

− 𝜆5]

2(𝜆5 − 𝑢𝐺)[−(𝛼𝐷 + 𝛼𝐺)𝜌𝐺]
0 −

𝛼𝐷𝜌𝐿

2(𝜆5 − 𝑢𝐺)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)
0 0

𝛼𝐷𝜌𝐿 [
𝑢𝐺𝛼𝐺(𝜌𝐺 − 𝜌𝐿)
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

− 𝜆5]

2(𝜆5 − 𝑢𝐺)[−(𝛼𝐷 + 𝛼𝐺)𝜌𝐿]

𝛼𝐷𝜌𝐿(−𝛥𝑝𝐼𝐺 +
𝑍𝜌𝐿𝜌𝐺
𝑋

)(𝑢𝑖 − 𝜆4)

2(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐺 + 𝜆4𝜆5)(𝜆5 − 𝑢𝐺)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)

𝛼𝐷𝜌𝐿 [
𝑢𝐺𝛼𝐷(𝜌𝐺 − 𝜌𝐿)
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

+ 𝜆4]

2(𝜆5 − 𝑢𝐺)[−(𝛼𝐷 + 𝛼𝐺)𝜌𝐺]
0

𝛼𝐷𝜌𝐿

2(𝜆5 − 𝑢𝐺)(𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿)
0 0

𝛼𝐷𝜌𝐿 [
𝑢𝐺𝛼𝐺(−𝜌𝐺 + 𝜌𝐿)
𝛼𝐺𝜌𝐺 + 𝛼𝐷𝜌𝐿

+ 𝜆4]

2(𝜆5 − 𝑢𝐺)[−(𝛼𝐷 + 𝛼𝐺)𝜌𝐿]

−
𝛼𝐵𝜌𝐺(−𝛥𝑝𝐼𝐿 +

𝐾𝜌𝐿𝜌𝐺
𝑌

)(−𝑢𝑖 + 𝜆7)

2(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐿 + 𝜆6𝜆7)(𝜆7 − 𝑢𝐿)(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

0
𝛼𝐵𝜌𝐺 [

𝑢𝐿𝛼𝐵(𝜌𝐺 − 𝜌𝐿)
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

− 𝜆7]

2(𝜆7 − 𝑢𝐿)[−(𝛼𝐵 + 𝛼𝐿)𝜌𝐿]
0 −

𝛼𝐵𝜌𝐺

2(𝜆7 − 𝑢𝐿)(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

𝛼𝐵𝜌𝐺 [
𝑢𝐿𝛼𝐿(−𝜌𝐺 + 𝜌𝐿)
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

− 𝜆7]

2(𝜆7 − 𝑢𝐿)[−(𝛼𝐵 + 𝛼𝐿)𝜌𝐺]
0

−
𝛼𝐵𝜌𝐺(−𝛥𝑝𝐼𝐿 +

𝐾𝜌𝐿𝜌𝐺
𝑌

)(𝑢𝑖 − 𝜆6)

2(𝑢𝑖
2 − 2𝑢𝑖𝑢𝐿 + 𝜆6𝜆7)(𝜆7 − 𝑢𝐿)(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

0
𝛼𝐵𝜌𝐺 [

𝑢𝐿𝛼𝐵(𝜌𝐺 − 𝜌𝐿)
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

+ 𝜆6]

2(𝜆7 − 𝑢𝐿)[−(𝛼𝐵 + 𝛼𝐿)𝜌𝐿]
0

𝛼𝐵𝜌𝐺

2(𝜆7 − 𝑢𝐿)(𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿)

𝛼𝐵𝜌𝐺 [
𝑢𝐿𝛼𝐿(𝜌𝐺 − 𝜌𝐿)
𝛼𝐵𝜌𝐺 + 𝛼𝐿𝜌𝐿

+ 𝜆6]

2(𝜆7 − 𝑢𝐿)[−(𝛼𝐵 + 𝛼𝐿)𝜌𝐺]
0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

                                                                                                                                                                                                                       (A.23) 
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Appendix B – Single Phase Test 
 

 Single phase tests were conducted in order to ensure that the DP sensors of the experimental 

facilities were working properly. The total pressure gradient is a sum of the frictional, 

gravitational and acceleration pressure gradients.  For single phase flow, those three terms can 

be calculated, based on the mass and momentum conservation laws, according to 

 

−
𝑑𝑝

𝑑𝐿
=
2

𝐷
𝑓𝐹𝜌𝑢

2 + 𝜌𝑔sin𝜃 + 𝜌𝑢
𝑑𝑢

𝑑𝐿
, 

 

(B.1) 

 

where 𝑓𝐹 is the Fanning friction factor, u is the fluid velocity. This equation is simplified, based 

on the totally developed flow condition, 

 

−
𝑑𝑝

𝑑𝐿
=
2

𝐷
𝑓𝐹𝜌𝑢

2 + 𝜌𝑔sin𝜃 

 

(B.2) 

 

and 𝑓𝐹 = 𝐶𝑓Re
−𝑛, in which 𝐶𝑓 = 16 and 𝑛 = 1 for laminar flow and 𝐶𝑓 = 0.046 and 𝑛 = 0.2. 

For the 4-in facility, test for different inclination angles were performed and the comparison 

between the experimental result and the calculated DPs are presented in Figs. B.1 to B.3 with 

less than 5% error for all the sensors.  
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Figure B. 1: 4-in facility single phase test for DP1. 

 

 

Figure B. 2: 4-in facility single phase test for DP2. 
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Figure B. 3: 4-in facility single phase test for DP3. 

 

 The single phase test was repeated for the DP sensors located at the 2-in facility. In the 

following graphs, the DP calculated, and the DP measured are compared. 

 

 

Figure B. 4: 2-in facility single phase test for DP1. 

 



139 

 

 

Figure B. 5: 2-in facility single phase test for DP2. 

 

 

Figure B. 6: 2-in facility single phase test for DP3. 
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Figure B. 7: 2-in facility single phase test for DP4. 

 

 According to Figs. B.4 to B.7, the errors for DP1 and DP2 are higher than DP3 and DP4. 

Even though the percentage error for DP1 and DP2 are relatively low, the results obtained 

with DP3 and DP4 are the ones considered in this work. 
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Appendix C – Uncertainty Analysis 
 

 Experimental measurements are performed to quantify and guide the understanding of a 

physical event. However, errors are intrinsically present in all measurement and they must be 

estimated in order to have a better confidence in the obtained results. The uncertainty analysis 

estimates the limits of the error and gives reliability in the results.  

 There are two types of error: the random (precision error) and the systematic error (bias 

error). Random errors are generated by random oscillations intrinsic to the measurements and 

changes from one reading to other, while systematic errors are constant for all experiments and 

are caused by calibration errors, data acquisition errors, etc. The random and systematic 

uncertainties are calculated below, according to Dieck (2007), Gokcal (2008), Fan (2017) and 

Zhu (2019). 

• Random Uncertainty 

 Considering 𝑁𝑝 the number of data points, 𝑋𝑖 the value of the 𝑖𝑡ℎ measurement and 𝑋̅ is the 

average value of all data points, the standard deviation of the average can be obtain as follows 

 

𝑆𝑋 = √
∑ (𝑋𝑖 − 𝑋̅)

2𝑁𝑝
𝑖=1

𝑁𝑝 − 1
. 

 

(C.1) 

  

The standard deviation of the average is given by 

 

𝑆𝑋̅ =
𝑆𝑋

√𝑁𝑝
. 

(C.2) 

 

• Systematic Uncertainty 

 The systematic error from different sources can be combined and calculated as 

 

𝑏𝑅 = (∑(𝑏𝑖)
2

𝑁𝑆

𝑖=1

)

1/2

, 

 

(C.3) 
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 where 𝑏𝑅 is the combined systematic uncertainty of the test result, 𝑏𝑖 corresponds to each 

source of the systematic uncertainty and 𝑁𝑆 is the number of systematic uncertainty source. 

Tables C.1 and C.2 presents the systematic uncertainty of the instruments for each experimental 

facility used. 

 

Table C. 1: Systematic uncertainty of instruments for the 4-in facility. 

Instrument Measured Variable Systematic Uncertainty 

Promass 83F Gas Mass Flow Rate ±0.35%  

Promass 83F Liquid Mass Flow Rate ±0.10%  

Rosemount 3051S2 Differential Pressure ±0.15%  

Rosemount 300S1 Pressure ±0.15%  

Rosemount 3144P Temperature ±0.25°F 

Digital Angle Finder Inclination Angle ±0.2° 

 

Table C. 2: Systematic uncertainty of instruments for the 2-in facility. 

Instrument Measured Variable Systematic Uncertainty 

MicroMotion™ Gas Mass Flow Rate ±0.1%  

MicroMotion™ Liquid Mass Flow Rate ±0.1%  

RTD Temperature ±0.5°C 

Rosemount Pressure ±0.1%  

Rosemount Differential Pressure ±0.1%  

 

• Combination of random and systematic uncertainty  

Random and systematic uncertainty are combined according to 

 

𝑈95 = ±𝑡95 [(
𝑏𝑅

2⁄ )
2

+ (𝑆𝑋̅)
2]
1/2

, 

 

(C.4) 

 

where 𝑈95 is the overall uncertainty, 𝑡95 is the student-t coefficient of 95%. 
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• Uncertainty Propagation 

 The uncertainty propagation is calculated whenever a parameter is calculated from two or 

more parameters that can be directly measured by the instrumentation. The uncertainty 

propagation is applied, for instance, for the superficial gas and liquid velocities. It is calculated 

according to Taylor’s series as 

 

𝑈(𝑓(𝑥1, 𝑥2, … , 𝑥𝑚)) = √∑(
𝜕𝑓

𝜕𝑥𝑖
𝑈(𝑥𝑖))

2𝑚

𝑖=1

, 

 

 

(C.5) 

where U is the propagated uncertainty and 𝑥𝑖 are the independent parameter that are directly 

measured. 

 According to Soedarmo (2019), the slug frequency systematic uncertainty calculation 

consider that one slug can be incorrectly accounted close to the start and end of the 

measurement. Besides that, the difference between the slug count of the sensors is added into 

the frequency uncertainty calculation. For the slug frequency, random uncertainty is not 

applicable. 

 The following table, Table C.3, presents the experimental data acquired for the 2inch and 

4inch facilities and their calculated uncertainties. First, the 2inch high viscosity oil/air facility 

results are displayed. Then, the results for the 4-inch water/air facility are presented separated 

by each inclination angle.  
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Table C. 3: Experimental data and uncertainties. 

 

0.000583 0.000115 0.183 0.005 0.177 0.036 0.106 0.002 0.283 0.036 857.79 28.43 0.597 0.023 0.754 0.003

0.000877 0.000114 0.178 0.005 0.267 0.036 0.103 0.002 0.370 0.036 851.42 33.50 0.818 0.032 0.992 0.010

0.001180 0.000115 0.179 0.005 0.358 0.036 0.104 0.002 0.462 0.036 907.34 30.27 0.916 0.016 1.202 0.002

0.001467 0.000114 0.179 0.005 0.440 0.036 0.104 0.002 0.544 0.036 949.96 31.76 1.011 0.030 1.402 0.008

0.000349 0.000114 0.346 0.009 0.092 0.031 0.200 0.004 0.292 0.032 1541.68 25.40 1.347 0.024 0.741 0.008

0.000667 0.000113 0.350 0.004 0.174 0.031 0.203 0.002 0.377 0.031 1621.60 25.07 1.749 0.024 0.961 0.003

0.001040 0.000114 0.347 0.007 0.269 0.031 0.201 0.004 0.470 0.031 1689.23 34.52 1.893 0.024 1.201 0.005

0.001380 0.000115 0.344 0.008 0.357 0.031 0.200 0.004 0.557 0.031 1738.43 35.16 1.972 0.016 1.429 0.002

0.001720 0.000114 0.342 0.008 0.441 0.031 0.198 0.004 0.639 0.031 1763.98 38.17 2.099 0.015 1.663 0.004

0.002080 0.000119 0.343 0.007 0.524 0.032 0.199 0.004 0.723 0.032 1867.26 78.89 2.056 0.016 1.871 0.009

0.000351 0.000114 0.434 0.008 0.085 0.029 0.252 0.004 0.337 0.029 2055.04 49.60 1.852 0.016 0.833 0.003

0.000737 0.000114 0.433 0.006 0.177 0.029 0.252 0.003 0.429 0.029 2082.95 38.54 2.383 0.023 1.084 0.006

0.001110 0.000114 0.427 0.004 0.266 0.029 0.248 0.002 0.514 0.029 2128.09 27.37 2.559 0.015 1.311 0.002

0.001480 0.000113 0.419 0.007 0.356 0.029 0.243 0.003 0.599 0.029 2133.15 38.23 2.261 0.024 1.539 0.004

0.001840 0.000116 0.424 0.004 0.437 0.029 0.247 0.002 0.684 0.029 2197.24 28.77 2.145 0.016 1.755 0.012

0.000793 0.000116 0.525 0.004 0.178 0.027 0.305 0.002 0.483 0.027 2541.51 28.40 3.053 0.030 1.205 0.008

0.002520 0.000114 0.517 0.007 0.521 0.026 0.301 0.003 0.822 0.026 2795.98 31.54 2.609 0.015 2.125 0.009

0.003180 0.000115 0.695 0.004 0.058 0.024 0.404 0.003 0.462 0.026 3245.57 27.03 3.176 0.065 1.098 0.007

0.000908 0.000114 0.694 0.008 0.179 0.023 0.403 0.002 0.582 0.023 3399.63 30.16 4.629 0.023 1.424 0.008

0.001114 0.000117 0.683 0.008 0.219 0.024 0.397 0.004 0.615 0.024 3451.14 27.91 4.354 0.024 1.521 0.014

0.002780 0.000114 0.683 0.007 0.527 0.023 0.397 0.003 0.924 0.023 3669.69 34.67 2.979 0.047 2.377 0.003

0.000253 0.000114 0.085 0.004 0.085 0.040 0.049 0.002 0.134 0.040 434.16 36.65 0.140 0.016 0.433 0.008

0.000506 0.000114 0.084 0.004 0.170 0.040 0.049 0.002 0.219 0.040 398.07 24.82 0.137 0.013 0.622 0.015

0.000797 0.000113 0.084 0.004 0.270 0.041 0.049 0.002 0.319 0.040 391.13 25.29 0.159 0.016 0.844 0.021

0.001304 0.000115 0.085 0.004 0.441 0.041 0.049 0.002 0.490 0.041 418.03 24.93 0.194 0.016 1.244 0.015

0.0152 0.000682 0.410 0.006 0.270 0.013 0.0500 0.00071 0.320 0.013 295.06 8.92 0.354 0.010 1.100 0.012

0.0228 0.000666 0.409 0.006 0.400 0.013 0.0500 0.00074 0.450 0.013 256.66 11.84 0.301 0.030 1.314 0.031

0.0378 0.000685 0.410 0.006 0.670 0.014 0.0500 0.00073 0.720 0.014 183.63 13.48 0.257 0.020 1.607 0.044

0.0604 0.000708 0.410 0.006 1.080 0.014 0.0500 0.00072 1.130 0.014 122.16 15.34 0.194 0.025 2.082 0.062

0.0228 0.0007 0.407 0.006 0.400 0.013 0.0500 0.0007 0.450 0.013 549.35 10.39 0.426 0.020 1.216 0.011

0.0379 0.0007 0.406 0.006 0.670 0.013 0.0500 0.0007 0.720 0.013 461.49 13.79 0.385 0.040 1.521 0.023

0.0604 0.0007 0.406 0.006 1.070 0.014 0.0500 0.0007 1.120 0.014 346.06 15.89 0.279 0.015 2.027 0.037

Uncertainty 

[m/s]

2-inch High viscosity Oil/Air Indoor Facility 

4-inch Water/Air Facility - Inclination: 2°

Usl [m/s]
Uncertainty 

[m/s]
Um [m/s]

Uncertainty 

[m/s]

dP/dx 

[Pa/m]

Uncertainty 

[Pa/m]

Gas mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Liquid mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Usg 

[m/s]

Uncertainty 

[m/s]

Gas mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Liquid mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Usg 

[m/s]

Uncertainty 

[m/s]

Slug frequency 

[1/s]

Uncertainty 

[1/s]

Translational 

velocity [m/s]

Slug frequency 

[1/s]

Uncertainty 

[1/s]

Translational 

velocity [m/s]

Uncertainty 

[m/s]
Usl [m/s]

Uncertainty 

[m/s]
Um [m/s]

Uncertainty 

[m/s]

dP/dx 

[Pa/m]

Uncertainty 

[Pa/m]

4-inch Water/Air Facility - Inclination: 5°

Gas mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Liquid mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Usg 

[m/s]

Translational 

velocity [m/s]

Uncertainty 

[m/s]

Uncertainty 

[Pa/m]

Slug frequency 

[1/s]

Uncertainty 

[m/s]
Usl [m/s]

Uncertainty 

[m/s]
Um [m/s]

Uncertainty 

[m/s]

dP/dx 

[Pa/m]

Uncertainty 

[1/s]
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0.0228 0.0007 0.409 0.006 0.400 0.012 0.0500 0.0007 0.450 0.012 1712.04 20.79 0.726 0.042 1.466 0.018

0.0378 0.0007 0.408 0.006 0.670 0.013 0.0500 0.0007 0.720 0.013 1408.06 58.98 0.585 0.020 1.688 0.034

0.0605 0.0007 0.408 0.006 1.070 0.013 0.0500 0.0007 1.120 0.013 1033.72 28.21 0.488 0.010 2.114 0.024

0.0229 0.0007 0.408 0.006 0.400 0.012 0.0500 0.0007 0.450 0.012 2274.04 36.96 0.824 0.055 1.516 0.023

0.0378 0.0007 0.407 0.006 0.660 0.013 0.0500 0.0007 0.710 0.013 1844.81 57.00 0.651 0.010 1.722 0.013

0.0606 0.0007 0.408 0.006 1.060 0.013 0.0500 0.0007 1.110 0.013 1414.61 17.51 0.542 0.015 2.161 0.043

0.0228 0.0007 0.408 0.006 0.400 0.012 0.0500 0.0007 0.450 0.012 3354.65 38.52 0.926 0.015 1.580 0.022

0.0376 0.0007 0.407 0.006 0.670 0.013 0.0500 0.0007 0.720 0.013 2637.15 68.53 0.768 0.035 1.741 0.027

0.0607 0.0007 0.408 0.006 1.070 0.013 0.0500 0.0007 1.120 0.013 1907.08 40.67 0.648 0.030 2.156 0.030

Uncertainty 

[m/s]
Usl [m/s]

Uncertainty 

[m/s]
Um [m/s]

Uncertainty 

[m/s]

dP/dx 

[Pa/m]

Uncertainty 

[Pa/m]

Gas mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Liquid mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Usg 

[m/s]

Uncertainty 

[m/s]

4-inch Water/Air Facility - Inclination: 20°

Slug frequency 

[1/s]

Uncertainty 

[1/s]

Translational 

velocity [m/s]

4-inch Water/Air Facility - Inclination: 15°

Gas mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Liquid mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Usg 

[m/s]

Uncertainty 

[m/s]
Usl [m/s]

Uncertainty 

[m/s]
Um [m/s]

Translational 

velocity [m/s]

Uncertainty 

[m/s]
Um [m/s]

Uncertainty 

[m/s]

dP/dx 

[Pa/m]

Uncertainty 

[Pa/m]

Slug frequency 

[1/s]

Uncertainty 

[1/s]

Uncertainty 

[m/s]

4-inch Water/Air Facility - Inclination: 30°

Gas mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Liquid mass flow 

rate [kg/s]

Uncertainty 

[kg/s]

Usg 

[m/s]

Uncertainty 

[m/s]
Usl [m/s]

Uncertainty 

[m/s]

Uncertainty 

[m/s]

dP/dx 

[Pa/m]

Uncertainty 

[Pa/m]

Slug frequency 

[1/s]

Uncertainty 

[1/s]

Translational 

velocity [m/s]


